10,794 research outputs found

    Combining discriminative and model based approaches for hand pose estimation

    Get PDF
    In this paper we present an approach to hand pose estimation that combines both discriminative and modelbased methods to overcome the limitations of each technique in isolation. A Randomised Decision Forests (RDF) is used to provide an initial estimate of the regions of the hand. This initial segmentation provides constraints to which a 3D model is fitted using Rigid Body Dynamics. Model fitting is guided using point to surface constraints which bind a kinematic model of the hand to the depth cloud using the segmentation of the discriminative approach. This combines the advantages of both techniques, reducing the training requirements for discriminative classification and simplifying the optimization process involved in model fitting by incorporating physical constraints from the segmentation. Our experiments on two challenging sequences show that this combined method outperforms the current state-of-the-art approach

    Linguistically-driven framework for computationally efficient and scalable sign recognition

    Full text link
    We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL)

    Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties

    Full text link
    Model-based approaches to 3D hand tracking have been shown to perform well in a wide range of scenarios. However, they require initialisation and cannot recover easily from tracking failures that occur due to fast hand motions. Data-driven approaches, on the other hand, can quickly deliver a solution, but the results often suffer from lower accuracy or missing anatomical validity compared to those obtained from model-based approaches. In this work we propose a hybrid approach for hand pose estimation from a single depth image. First, a learned regressor is employed to deliver multiple initial hypotheses for the 3D position of each hand joint. Subsequently, the kinematic parameters of a 3D hand model are found by deliberately exploiting the inherent uncertainty of the inferred joint proposals. This way, the method provides anatomically valid and accurate solutions without requiring manual initialisation or suffering from track losses. Quantitative results on several standard datasets demonstrate that the proposed method outperforms state-of-the-art representatives of the model-based, data-driven and hybrid paradigms.Comment: BMVC 2015 (oral); see also http://lrs.icg.tugraz.at/research/hybridhape

    Articulated Clinician Detection Using 3D Pictorial Structures on RGB-D Data

    Full text link
    Reliable human pose estimation (HPE) is essential to many clinical applications, such as surgical workflow analysis, radiation safety monitoring and human-robot cooperation. Proposed methods for the operating room (OR) rely either on foreground estimation using a multi-camera system, which is a challenge in real ORs due to color similarities and frequent illumination changes, or on wearable sensors or markers, which are invasive and therefore difficult to introduce in the room. Instead, we propose a novel approach based on Pictorial Structures (PS) and on RGB-D data, which can be easily deployed in real ORs. We extend the PS framework in two ways. First, we build robust and discriminative part detectors using both color and depth images. We also present a novel descriptor for depth images, called histogram of depth differences (HDD). Second, we extend PS to 3D by proposing 3D pairwise constraints and a new method that makes exact inference tractable. Our approach is evaluated for pose estimation and clinician detection on a challenging RGB-D dataset recorded in a busy operating room during live surgeries. We conduct series of experiments to study the different part detectors in conjunction with the various 2D or 3D pairwise constraints. Our comparisons demonstrate that 3D PS with RGB-D part detectors significantly improves the results in a visually challenging operating environment.Comment: The supplementary video is available at https://youtu.be/iabbGSqRSg

    Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation

    Full text link
    This paper proposes a new hybrid architecture that consists of a deep Convolutional Network and a Markov Random Field. We show how this architecture is successfully applied to the challenging problem of articulated human pose estimation in monocular images. The architecture can exploit structural domain constraints such as geometric relationships between body joint locations. We show that joint training of these two model paradigms improves performance and allows us to significantly outperform existing state-of-the-art techniques

    Evaluating Example-based Pose Estimation: Experiments on the HumanEva Sets

    Get PDF
    We present an example-based approach to pose recovery, using histograms of oriented gradients as image descriptors. Tests on the HumanEva-I and HumanEva-II data sets provide us insight into the strengths and limitations of an example-based approach. We report mean relative 3D errors of approximately 65 mm per joint on HumanEva-I, and 175 mm on HumanEva-II. We discuss our results using single and multiple views. Also, we perform experiments to assess the algorithm’s generalization to unseen subjects, actions and viewpoints. We plan to incorporate the temporal aspect of human motion analysis to reduce orientation ambiguities, and increase the pose recovery accuracy
    • …
    corecore