5,574 research outputs found

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    Clustering-Based Predictive Process Monitoring

    Full text link
    Business process enactment is generally supported by information systems that record data about process executions, which can be extracted as event logs. Predictive process monitoring is concerned with exploiting such event logs to predict how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The predicate can be, for example, a temporal logic constraint or a time constraint, or any predicate that can be evaluated over a completed trace. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous traces are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data to discriminate between fulfillments and violations. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Popular Ensemble Methods: An Empirical Study

    Full text link
    An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund and Shapire, 1996; Shapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier -- especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees

    Forecasting with time series imaging

    Full text link
    Feature-based time series representations have attracted substantial attention in a wide range of time series analysis methods. Recently, the use of time series features for forecast model averaging has been an emerging research focus in the forecasting community. Nonetheless, most of the existing approaches depend on the manual choice of an appropriate set of features. Exploiting machine learning methods to extract features from time series automatically becomes crucial in state-of-the-art time series analysis. In this paper, we introduce an automated approach to extract time series features based on time series imaging. We first transform time series into recurrence plots, from which local features can be extracted using computer vision algorithms. The extracted features are used for forecast model averaging. Our experiments show that forecasting based on automatically extracted features, with less human intervention and a more comprehensive view of the raw time series data, yields highly comparable performances with the best methods in the largest forecasting competition dataset (M4) and outperforms the top methods in the Tourism forecasting competition dataset

    Ensemble Methods in Environmental Data Mining

    Get PDF
    Environmental data mining is the nontrivial process of identifying valid, novel, and potentially useful patterns in data from environmental sciences. This chapter proposes ensemble methods in environmental data mining that combines the outputs from multiple classification models to obtain better results than the outputs that could be obtained by an individual model. The study presented in this chapter focuses on several ensemble strategies in addition to the standard single classifiers such as decision tree, naive Bayes, support vector machine, and k-nearest neighbor (KNN), popularly used in literature. This is the first study that compares four ensemble strategies for environmental data mining: (i) bagging, (ii) bagging combined with random feature subset selection (the random forest algorithm), (iii) boosting (the AdaBoost algorithm), and (iv) voting of different algorithms. In the experimental studies, ensemble methods are tested on different real-world environmental datasets in various subjects such as air, ecology, rainfall, and soil
    corecore