1,284 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Running user-provided virtual machines in batch-oriented computing clusters

    Get PDF
    The use of virtualization in HPC clusters can provide rich software environments, application isolation and efficient workload management mechanisms, but system-level virtualization introduces a software layer on the computing nodes that reduces performance and inhibits the direct use of hardware devices. We propose an unobtrusive user-level platform that allows the execution of virtual machines inside batch jobs without limiting the computing cluster’s ability to execute the most demanding applications. A per-user platform uses a static mode in which the VMs run entirely using the resources of a single batch job and a dynamic mode in which the VMs navigate at runtime between the continuously allocated jobs node time-slots. A dynamic mode is introduced to build complex scenarios with several VMs for personalized HPC environments or persistent services such as databases or web services based applications. Fault-tolerant system agents, integrated using group communication primitives, control the system and execute user commands and automatic scheduling decisions made by an optional monitoring function. The performance of compute intensive applications running on our system suffers negligible overhead compared to the native configuration. The performance of distributed applications is dependent on their communication patterns as the user-mode network overlay introduces a relevant communication overhead.FC

    EPOBF: Energy Efficient Allocation of Virtual Machines in High Performance Computing Cloud

    Full text link
    Cloud computing has become more popular in provision of computing resources under virtual machine (VM) abstraction for high performance computing (HPC) users to run their applications. A HPC cloud is such cloud computing environment. One of challenges of energy efficient resource allocation for VMs in HPC cloud is tradeoff between minimizing total energy consumption of physical machines (PMs) and satisfying Quality of Service (e.g. performance). On one hand, cloud providers want to maximize their profit by reducing the power cost (e.g. using the smallest number of running PMs). On the other hand, cloud customers (users) want highest performance for their applications. In this paper, we focus on the scenario that scheduler does not know global information about user jobs and user applications in the future. Users will request shortterm resources at fixed start times and non interrupted durations. We then propose a new allocation heuristic (named Energy-aware and Performance per watt oriented Bestfit (EPOBF)) that uses metric of performance per watt to choose which most energy-efficient PM for mapping each VM (e.g. maximum of MIPS per Watt). Using information from Feitelson's Parallel Workload Archive to model HPC jobs, we compare the proposed EPOBF to state of the art heuristics on heterogeneous PMs (each PM has multicore CPU). Simulations show that the EPOBF can reduce significant total energy consumption in comparison with state of the art allocation heuristics.Comment: 10 pages, in Procedings of International Conference on Advanced Computing and Applications, Journal of Science and Technology, Vietnamese Academy of Science and Technology, ISSN 0866-708X, Vol. 51, No. 4B, 201

    A Genetic Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud

    Full text link
    Energy efficiency has become an important measurement of scheduling algorithm for private cloud. The challenge is trade-off between minimizing of energy consumption and satisfying Quality of Service (QoS) (e.g. performance or resource availability on time for reservation request). We consider resource needs in context of a private cloud system to provide resources for applications in teaching and researching. In which users request computing resources for laboratory classes at start times and non-interrupted duration in some hours in prior. Many previous works are based on migrating techniques to move online virtual machines (VMs) from low utilization hosts and turn these hosts off to reduce energy consumption. However, the techniques for migration of VMs could not use in our case. In this paper, a genetic algorithm for power-aware in scheduling of resource allocation (GAPA) has been proposed to solve the static virtual machine allocation problem (SVMAP). Due to limited resources (i.e. memory) for executing simulation, we created a workload that contains a sample of one-day timetable of lab hours in our university. We evaluate the GAPA and a baseline scheduling algorithm (BFD), which sorts list of virtual machines in start time (i.e. earliest start time first) and using best-fit decreasing (i.e. least increased power consumption) algorithm, for solving the same SVMAP. As a result, the GAPA algorithm obtains total energy consumption is lower than the baseline algorithm on simulated experimentation.Comment: 10 page

    Virtual Organization Clusters: Self-Provisioned Clouds on the Grid

    Get PDF
    Virtual Organization Clusters (VOCs) provide a novel architecture for overlaying dedicated cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution environments on a per-Virtual Organization basis, without the cost of physical cluster construction or the overhead of per-job containers. Administrative access and overlay network capabilities are granted to Virtual Organizations (VOs) that choose to implement VOC technology, while the system remains completely transparent to end users and non-participating VOs. Unlike alternative systems that require explicit leases, VOCs are autonomically self-provisioned according to configurable usage policies. As a grid computing architecture, VOCs are designed to be technology agnostic and are implementable by any combination of software and services that follows the Virtual Organization Cluster Model. As demonstrated through simulation testing and evaluation of an implemented prototype, VOCs are a viable mechanism for increasing end-user job compatibility on grid sites. On existing production grids, where jobs are frequently submitted to a small subset of sites and thus experience high queuing delays relative to average job length, the grid-wide addition of VOCs does not adversely affect mean job sojourn time. By load-balancing jobs among grid sites, VOCs can reduce the total amount of queuing on a grid to a level sufficient to counteract the performance overhead introduced by virtualization

    Dynamic Resource Allocation on Virtual Machines

    Get PDF
    Resource allocation is one of the main issue in cloud computing (rare resources will be distributed). Although having sufficient resources sometimes we cannot make use those properly. So we use resource allocation method for the sufficient usage of resources available. In resource allocation method user neither need to install hardware nor software for to access applications. In this paper the aim is to implement a virtual machine ( VM ) resource monitor in OpenNebula platform with web based interface, and to integrate a Dynamic Resource Allocation ( DRA ) method in virtual machine ( which is useful when overload occurs) and to show the experimental results of before DRA and after DRA in virtual machine
    • …
    corecore