740 research outputs found

    EPICURE: A partitioning and co-design framework for reconfigurable computing

    Get PDF
    This paper presents a new design methodology able to bridge the gap between an abstract specification and a heterogeneous reconfigurable architecture. The EPICURE contribution is the result of a joint study on abstraction/refinement methods and a smart reconfigurable architecture within the formal Esterel design tools suite. The original points of this work are: (i) a generic HW/SW interface model, (ii) a specification methodology that handles the control, and includes efficient verification and HW/SW synthesis capabilities, (iii) a method for parallelism exploration based on abstract resources/performance estimation expressed in terms of area/delay tradeoffs, (iv) a HW/SW partitioning approach that refines the specification into explicit HW configurations and the associated SW control. The EPICURE framework shows how a cooperation of complementary methodologies and CAD tools associated with a relevant architecture can signficantly improve the designer productivity, especially in the context of reconfigurable architectures

    Agile SoC Development with Open ESP

    Full text link
    ESP is an open-source research platform for heterogeneous SoC design. The platform combines a modular tile-based architecture with a variety of application-oriented flows for the design and optimization of accelerators. The ESP architecture is highly scalable and strikes a balance between regularity and specialization. The companion methodology raises the level of abstraction to system-level design and enables an automated flow from software and hardware development to full-system prototyping on FPGA. For application developers, ESP offers domain-specific automated solutions to synthesize new accelerators for their software and to map complex workloads onto the SoC architecture. For hardware engineers, ESP offers automated solutions to integrate their accelerator designs into the complete SoC. Conceived as a heterogeneous integration platform and tested through years of teaching at Columbia University, ESP supports the open-source hardware community by providing a flexible platform for agile SoC development.Comment: Invited Paper at the 2020 International Conference On Computer Aided Design (ICCAD) - Special Session on Opensource Tools and Platforms for Agile Development of Specialized Architecture

    大規模システムLSI設計のための統一的ハードウェア・ソフトウェア協調検証手法

    Get PDF
    Currently, the complexity of embedded LSI system is growing faster than the productivity of system design. This trend results in a design productivity gap, particularly in tight development time. Since the verification task takes bigger part of development task, it becomes a major challenge in LSI system design. In order to guarantee system reliability and quality of results (QoR), verifying large coverage of system functionality requires huge amount of relevant test cases and various scenario of evaluations. To overcome these problems, verification methodology is evolving toward supporting higher level of design abstraction by employing HW-SW co-verification. In this study, we present a novel approach for verification LSI circuit which is called as unified HW/SW co-verification framework. The study aims to improve design efficiency while maintains implementation consistency in the point of view of system-level performance. The proposed data-driven simulation and flexible interface of HW and SW design become the backbone of verification framework. In order to avoid time consuming, prone error, and iterative design spin-off in a large team, the proposed framework has to support multiple design abstractions. Hence, it can close the loop of design, exploration, optimization, and testing. Furthermore, the proposed methodology is also able to co-operate with system-level simulation in high-level abstraction, which is easy to extend for various applications and enables fast-turn around design modification. These contributions are discussed in chapter 3. In order to show the effectiveness and the use-cases of the proposed verification framework, the evaluation and metrics assessments of Very High Throughput wireless LAN system design are carried out. Two application examples are provided. The first case in chapter 4 is intended for fast verification and design exploration of large circuit. The Maximum Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT). The second case, as presented in chapter 5, is the evaluation for system-level simulation. The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experimental results show that the proposed verification approach gives significant improvements of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed framework is also able to support various schemes of system level evaluations and cross-layer evaluation of wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第328号 学位授与年月日:平成29年6月30日1 Introduction|2 Design and Verification in LSI System Design|3 Unified HW/SW Co-verification Methodology|4 Fast Co-verification and Design Exploration in Complex Circuits|5 Unified System Level Simulator for Very High Throughput Wireless Systems|6 Conclusion and Future Work九州工業大学平成29年

    Optimierung der Energie und Power getriebenen Architekturexploration für Multicore und heterogenes System on Chip

    Get PDF
    The contribution of this work builds on top of the established virtual prototype platforms to improve both SoC design quality and productivity. Initially, an automatic system-level power estimation framework was developed to address the critical issue of early power estimation in SoC design. The estimation framework models the static and dynamic power consumption of the hardware components. These models are created from the normalized values of the basic design components of SoC, obtained through one-time power simulation of RTL hardware models. The framework allows dynamic technology node reconfiguration for power estimation models. Its instantaneous power reporting aids the detection of possible hotspot early into the design process. Adding this additional data in conjunction with a steadily growing design space of complex heterogeneous SoC, finding the right parameter configuration is a challenging and laborious task for a system-level designer. This work addresses this bottleneck by optimizing the design space exploration (DSE) process for MPSoC design. An automatic DSE framework for virtual platforms (VPs) was developed which is flexible and allows the selection optimal parameter configuration without pre-existing knowledge. To reduce exploration time, the framework is equipped with several multi-objective optimization techniques based on simulated annealing and a genetic algorithm. Lastly, to aid HW/SW partitioning at system-level, a flexible and automated workflow (SW2TLM) is presented. It allows the designer to explore various possible partitioning scenarios without going into depth of the hardware architecture complexity and software integration. The framework generates system-level hardware accelerators from corresponding functionality encoded in the software code and integrates them into the VP. Power consumption and time speedups of acceleration is reported to the designer, which further increases the quality and productivity of the development process towards the final architecture. The presented tools are evaluated using a state-of-the-art VP for a range of single and multi-core applications. Viewing the energy delay product, a reduction in exploration time was recorded at approximately 62% (worst case), maintaining optimal parameter accuracy of 90% compared to previous techniques. While the SW2TLM further increases the exploration versatility by combining modern high-level synthesis with system-level architectural exploration.Der Beitrag dieser Arbeit baut auf dem etablierten Konzept der virtuellen Prototyp (VP) Plattformen auf, um die Qualität und die Produktivität des Entwurfsprozesses zu verbessern. Zunächst wurde ein automatisches System-Level-Framework entwickelt, um Verlustleistungsabschätzung für SoC-Designs in einer deutlich früheren Entwicklungsphase zu ermöglichen. Hierfür werden statischen und dynamischen Energieverbrauchsanteile individueller Hardwareelemente durch ein abstraktes Modell ausgedrückt. Das Framework ermöglicht eine dynamische Anpassung des Technologieknotens sowie die Integration neuer Leistungsmodelle für Drittanbieterkomponenten. Die kontinuierliche Erfassung der Energieverbrauchseigenschaften und ihre grafische Darstellung Benutzeroberfläche unterstützt zusätzlich die frühzeitige Identifikation möglicher Hotspots. Durch die Bereitstellung zusätzlicher Daten, in Verbindung mit einem stetig wachsenden Entwurfsraum komplexer SoCs, ist die Identifikation der richtigen Parameterkonfiguration eine zeitintensive Aufgabe. Die vorgelegten Konzepte erlauben eine gesteigerte Automatisierung des Explorationsprozesses. Techniken der mehrdimensionalen Optimierung, basierend auf Simulated Annealing und genetischer Algorithmen erlauben die Identifikation von geeigneten Konfigurationen ohne vorheriges Wissen oder Erfahrungswerte Schließlich wurde zur Unterstützung der HW/SW -Partitionierung auf System-Ebene ein flexibler und automatisierter Workflow entwickelt. Er ermöglicht es dem Designer verschiedene mögliche Partitionierungsszenarien zu untersuchen, ohne sich in die Komplexität der Hardwarearchitektur und der Softwareintegration zu vertiefen. Das Framework erzeugt abstrakte Beschleunigermodelle aus entsprechenden Softwarefunktionen und integriert sie nahtlos in den ausführbare VP. Detaillierte Daten zum Energieverbrauch, Beschleunigungsfaktor und Kommunikationsoverhead der Partitionierung werden erfasst und dem Designer zur Verfügung gestellt, was die Qualität und Produktivität des weiter erhöht. Die vorgestellten Tools werden mit einer modernen VP für verschiedene SW-Anwendungen evaluiert. Bei Betrachtung des Energieverzögerungsprodukts wurde eine Verringerung der Explorationszeit um mehr als 62% bei 90% Parametergenauigkeit festgestell. Darauf aufbauend, erleichtert die automatisierte Untersuchung verschiedener HW/SW Partitionierungen die Entwicklung heterogener Architekturen durch die Kombination moderner HLS mit Architektur-Exploration auf der Systemebene

    Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems

    Full text link
    [ES] La utilización de sistemas empotrados en cada vez más ámbitos de aplicación está llevando a que su diseño deba enfrentarse a mayores requisitos de rendimiento, consumo de energía y área (PPA). Asimismo, su utilización en aplicaciones críticas provoca que deban cumplir con estrictos requisitos de confiabilidad para garantizar su correcto funcionamiento durante períodos prolongados de tiempo. En particular, el uso de dispositivos lógicos programables de tipo FPGA es un gran desafío desde la perspectiva de la confiabilidad, ya que estos dispositivos son muy sensibles a la radiación. Por todo ello, la confiabilidad debe considerarse como uno de los criterios principales para la toma de decisiones a lo largo del todo flujo de diseño, que debe complementarse con diversos procesos que permitan alcanzar estrictos requisitos de confiabilidad. Primero, la evaluación de la robustez del diseño permite identificar sus puntos débiles, guiando así la definición de mecanismos de tolerancia a fallos. Segundo, la eficacia de los mecanismos definidos debe validarse experimentalmente. Tercero, la evaluación comparativa de la confiabilidad permite a los diseñadores seleccionar los componentes prediseñados (IP), las tecnologías de implementación y las herramientas de diseño (EDA) más adecuadas desde la perspectiva de la confiabilidad. Por último, la exploración del espacio de diseño (DSE) permite configurar de manera óptima los componentes y las herramientas seleccionados, mejorando así la confiabilidad y las métricas PPA de la implementación resultante. Todos los procesos anteriormente mencionados se basan en técnicas de inyección de fallos para evaluar la robustez del sistema diseñado. A pesar de que existe una amplia variedad de técnicas de inyección de fallos, varias problemas aún deben abordarse para cubrir las necesidades planteadas en el flujo de diseño. Aquellas soluciones basadas en simulación (SBFI) deben adaptarse a los modelos de nivel de implementación, teniendo en cuenta la arquitectura de los diversos componentes de la tecnología utilizada. Las técnicas de inyección de fallos basadas en FPGAs (FFI) deben abordar problemas relacionados con la granularidad del análisis para poder localizar los puntos débiles del diseño. Otro desafío es la reducción del coste temporal de los experimentos de inyección de fallos. Debido a la alta complejidad de los diseños actuales, el tiempo experimental dedicado a la evaluación de la confiabilidad puede ser excesivo incluso en aquellos escenarios más simples, mientras que puede ser inviable en aquellos procesos relacionados con la evaluación de múltiples configuraciones alternativas del diseño. Por último, estos procesos orientados a la confiabilidad carecen de un soporte instrumental que permita cubrir el flujo de diseño con toda su variedad de lenguajes de descripción de hardware, tecnologías de implementación y herramientas de diseño. Esta tesis aborda los retos anteriormente mencionados con el fin de integrar, de manera eficaz, estos procesos orientados a la confiabilidad en el flujo de diseño. Primeramente, se proponen nuevos métodos de inyección de fallos que permiten una evaluación de la confiabilidad, precisa y detallada, en diferentes niveles del flujo de diseño. Segundo, se definen nuevas técnicas para la aceleración de los experimentos de inyección que mejoran su coste temporal. Tercero, se define dos estrategias DSE que permiten configurar de manera óptima (desde la perspectiva de la confiabilidad) los componentes IP y las herramientas EDA, con un coste experimental mínimo. Cuarto, se propone un kit de herramientas que automatiza e incorpora con eficacia los procesos orientados a la confiabilidad en el flujo de diseño semicustom. Finalmente, se demuestra la utilidad y eficacia de las propuestas mediante un caso de estudio en el que se implementan tres procesadores empotrados en un FPGA de Xilinx serie 7.[CA] La utilització de sistemes encastats en cada vegada més àmbits d'aplicació està portant al fet que el seu disseny haja d'enfrontar-se a majors requisits de rendiment, consum d'energia i àrea (PPA). Així mateix, la seua utilització en aplicacions crítiques provoca que hagen de complir amb estrictes requisits de confiabilitat per a garantir el seu correcte funcionament durant períodes prolongats de temps. En particular, l'ús de dispositius lògics programables de tipus FPGA és un gran desafiament des de la perspectiva de la confiabilitat, ja que aquests dispositius són molt sensibles a la radiació. Per tot això, la confiabilitat ha de considerar-se com un dels criteris principals per a la presa de decisions al llarg del tot flux de disseny, que ha de complementar-se amb diversos processos que permeten aconseguir estrictes requisits de confiabilitat. Primer, l'avaluació de la robustesa del disseny permet identificar els seus punts febles, guiant així la definició de mecanismes de tolerància a fallades. Segon, l'eficàcia dels mecanismes definits ha de validar-se experimentalment. Tercer, l'avaluació comparativa de la confiabilitat permet als dissenyadors seleccionar els components predissenyats (IP), les tecnologies d'implementació i les eines de disseny (EDA) més adequades des de la perspectiva de la confiabilitat. Finalment, l'exploració de l'espai de disseny (DSE) permet configurar de manera òptima els components i les eines seleccionats, millorant així la confiabilitat i les mètriques PPA de la implementació resultant. Tots els processos anteriorment esmentats es basen en tècniques d'injecció de fallades per a poder avaluar la robustesa del sistema dissenyat. A pesar que existeix una àmplia varietat de tècniques d'injecció de fallades, diverses problemes encara han d'abordar-se per a cobrir les necessitats plantejades en el flux de disseny. Aquelles solucions basades en simulació (SBFI) han d'adaptar-se als models de nivell d'implementació, tenint en compte l'arquitectura dels diversos components de la tecnologia utilitzada. Les tècniques d'injecció de fallades basades en FPGAs (FFI) han d'abordar problemes relacionats amb la granularitat de l'anàlisi per a poder localitzar els punts febles del disseny. Un altre desafiament és la reducció del cost temporal dels experiments d'injecció de fallades. A causa de l'alta complexitat dels dissenys actuals, el temps experimental dedicat a l'avaluació de la confiabilitat pot ser excessiu fins i tot en aquells escenaris més simples, mentre que pot ser inviable en aquells processos relacionats amb l'avaluació de múltiples configuracions alternatives del disseny. Finalment, aquests processos orientats a la confiabilitat manquen d'un suport instrumental que permeta cobrir el flux de disseny amb tota la seua varietat de llenguatges de descripció de maquinari, tecnologies d'implementació i eines de disseny. Aquesta tesi aborda els reptes anteriorment esmentats amb la finalitat d'integrar, de manera eficaç, aquests processos orientats a la confiabilitat en el flux de disseny. Primerament, es proposen nous mètodes d'injecció de fallades que permeten una avaluació de la confiabilitat, precisa i detallada, en diferents nivells del flux de disseny. Segon, es defineixen noves tècniques per a l'acceleració dels experiments d'injecció que milloren el seu cost temporal. Tercer, es defineix dues estratègies DSE que permeten configurar de manera òptima (des de la perspectiva de la confiabilitat) els components IP i les eines EDA, amb un cost experimental mínim. Quart, es proposa un kit d'eines (DAVOS) que automatitza i incorpora amb eficàcia els processos orientats a la confiabilitat en el flux de disseny semicustom. Finalment, es demostra la utilitat i eficàcia de les propostes mitjançant un cas d'estudi en el qual s'implementen tres processadors encastats en un FPGA de Xilinx serie 7.[EN] Embedded systems are steadily extending their application areas, dealing with increasing requirements in performance, power consumption, and area (PPA). Whenever embedded systems are used in safety-critical applications, they must also meet rigorous dependability requirements to guarantee their correct operation during an extended period of time. Meeting these requirements is especially challenging for those systems that are based on Field Programmable Gate Arrays (FPGAs), since they are very susceptible to Single Event Upsets. This leads to increased dependability threats, especially in harsh environments. In such a way, dependability should be considered as one of the primary criteria for decision making throughout the whole design flow, which should be complemented by several dependability-driven processes. First, dependability assessment quantifies the robustness of hardware designs against faults and identifies their weak points. Second, dependability-driven verification ensures the correctness and efficiency of fault mitigation mechanisms. Third, dependability benchmarking allows designers to select (from a dependability perspective) the most suitable IP cores, implementation technologies, and electronic design automation (EDA) tools. Finally, dependability-aware design space exploration (DSE) allows to optimally configure the selected IP cores and EDA tools to improve as much as possible the dependability and PPA features of resulting implementations. The aforementioned processes rely on fault injection testing to quantify the robustness of the designed systems. Despite nowadays there exists a wide variety of fault injection solutions, several important problems still should be addressed to better cover the needs of a dependability-driven design flow. In particular, simulation-based fault injection (SBFI) should be adapted to implementation-level HDL models to take into account the architecture of diverse logic primitives, while keeping the injection procedures generic and low-intrusive. Likewise, the granularity of FPGA-based fault injection (FFI) should be refined to the enable accurate identification of weak points in FPGA-based designs. Another important challenge, that dependability-driven processes face in practice, is the reduction of SBFI and FFI experimental effort. The high complexity of modern designs raises the experimental effort beyond the available time budgets, even in simple dependability assessment scenarios, and it becomes prohibitive in presence of alternative design configurations. Finally, dependability-driven processes lack an instrumental support covering the semicustom design flow in all its variety of description languages, implementation technologies, and EDA tools. Existing fault injection tools only partially cover the individual stages of the design flow, being usually specific to a particular design representation level and implementation technology. This work addresses the aforementioned challenges by efficiently integrating dependability-driven processes into the design flow. First, it proposes new SBFI and FFI approaches that enable an accurate and detailed dependability assessment at different levels of the design flow. Second, it improves the performance of dependability-driven processes by defining new techniques for accelerating SBFI and FFI experiments. Third, it defines two DSE strategies that enable the optimal dependability-aware tuning of IP cores and EDA tools, while reducing as much as possible the robustness evaluation effort. Fourth, it proposes a new toolkit (DAVOS) that automates and seamlessly integrates the aforementioned dependability-driven processes into the semicustom design flow. Finally, it illustrates the usefulness and efficiency of these proposals through a case study consisting of three soft-core embedded processors implemented on a Xilinx 7-series SoC FPGA.Tuzov, I. (2020). Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159883TESI
    corecore