6,872 research outputs found

    Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis

    Get PDF
    The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions

    Marine Microbial Diversity and its role in Ecosystem Functioning and Environmental Change

    Get PDF
    Seas and oceans cover more than 70% of the Earth’s surface, host the majority of its biomass, and contribute significantly to all global cycles of matter and energy. All life on Earth most likely originated from microbes in the sea. In today’s marine ecosystems, following billions of years of evolution, microbes such as Bacteria, Archaea, viruses, fungi and protists (including microalgae), dominate the living biomass. Recent rapid developments in molecular ecology, metagenomics and ecological modelling illustrate that microbes represent the most important biological group on Earth in terms of phylogenetic and functional diversity. In addition, interdisciplinary research has uncovered new and unexpected roles of microbes in the biogeochemical cycling of carbon, nitrogen, silica and iron and many other (trace) elements in our seas and oceans. Marine microorganisms produce the organic matter and oxygen required to sustain life and facilitate the storage, transport, and turnover of key biological elements. Thus, microorganisms are the foundation of life and are of critical importance to the habitability and sustainability of our planet. (...)Peer reviewe

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Novel deep learning architectures for marine and aquaculture applications

    Get PDF
    Alzayat Saleh's research was in the area of artificial intelligence and machine learning to autonomously recognise fish and their morphological features from digital images. Here he created new deep learning architectures that solved various computer vision problems specific to the marine and aquaculture context. He found that these techniques can facilitate aquaculture management and environmental protection. Fisheries and conservation agencies can use his results for better monitoring strategies and sustainable fishing practices

    Bio-inspired Optimization: Algorithm, Analysis and Scope of Application

    Get PDF
    In the last few years, bio-inspired optimization techniques have been widely adopted in fields such as computer science, mathematics, and biology in order to optimize solutions. Bio inspired optimization problems are usually nonlinear and restricted to multiple nonlinear constraints to tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This work comprises state-of-art of ten recent bio-inspired algorithms, gap analysis, and its applications namely; Particle swarm optimization (PSO), Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Cuckoo Search Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions on the essence of these algorithms and their connections to self-organization and their applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future

    Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data

    Get PDF
    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and
    • …
    corecore