2,989 research outputs found

    Interactive Learning in Decision Support

    Get PDF
    De acordo com o dicionário priberam da língua portuguesa, o conceito de Fraude pode ser definido como uma “ação ilícita, punível por lei, que procura enganar alguém ou alguma entidade ou escapar a obrigações legais”. Este tópico tem vindo a ganhar cada vez mais relevância em tempos recentes, com novos casos a se tornarem públicos de uma forma frequente. Desta forma, existe uma procura contínua por soluções que permitam, numa primeira fase, prevenir a ocorrência de fraude, ou, caso a mesma já tenha ocorrido, a detetar o mais rapidamente possível. Isto representa um grande desafio: em primeiro lugar, a evolução tecnológica permite que se elaborem esquemas fraudulentos cada vez mais complexos e eficazes e, portanto, mais difíceis de detetar e parar. Para além disto, os dados e a informação que deles se pode retirar são vistos como algo cada vez mais importante no contexto social. Consequentemente, indivíduos e empresas começaram a recolher e armazenar grandes quantidades de todo o tipo de dados. Isto representa o conceito de Big Data – grandes quantidades de dados de diferentes tipos, com diferentes graus de complexidade, produzidos a ritmos diferentes e provenientes de diferentes fontes. Isto veio, por sua vez, tornar inviável a utilização de tecnologias e algoritmos tradicionais de deteção de fraude, uma vez que estes não possuem capacidade para processar um tão grande conjunto de dados, tão diversos. É neste contexto que a área de Machine Learning tem vindo a ser cada vez mais explorada, na busca por soluções que permitam dar resposta a este problema. Normalmente, os sistemas de Machine Learning são vistos como algo completamente autónomo. Nos últimos anos, no entanto, sistemas interativos nos quais especialistas humanos contribuem ativamente no processo de aprendizagem têm vindo a apresentar um desempenho superior quando comparados com sistemas completamente automatizados. Isto pode verificar-se em cenários em que existe um grande conjunto de dados de diversos tipos e de diferentes origens (Big Data), cenários em que o input é um fluxo de dados ou quando existe uma alteração do contexto no qual os dados estão inseridos, num fenómeno conhecido por concept drift. Tendo isto em conta, neste documento é descrito um projeto cujo tema se insere no contexto da utilização de aprendizagem interativa no suporte à decisão, abordando a temática das auditorias digitais e, mais concretamente, o caso da deteção de fraude fiscal. Desta forma, a solução proposta passa pelo desenvolvimento de um sistema de Machine Learning interativo e dinâmico, na medida em que um dos principais objetivos passa por permitir a um humano especialista no domínio não só contribuir com o seu conhecimento no processo de aprendizagem do sistema, mas também que este possa contribuir com novo conhecimento, através da sugestão de uma nova variável ou um novo valor para uma variável já existente, em qualquer altura. O sistema deve então ser capaz de integrar o novo conhecimento de uma forma autónoma e continuar com o seu normal funcionamento. Esta é, na verdade, a principal característica inovadora da solução proposta, uma vez que em sistemas de Machine Learning tradicionais isto não é possível, visto que estes implicam uma estrutura do dataset rígida, e em que qualquer alteração neste sentido implicaria um reinício de todo o processo de treino de modelos, desta vez com o novo dataset.Machine Learning has been evolving rapidly over the past years, with new algorithms and approaches being devised to solve the challenges that the new properties of data pose. Specifically, algorithms must now learn continuously and in real time, from very large and possibly distributed datasets. Usually, Machine Learning systems are seen as something fully automatic. Recently, however, interactive systems in which the human experts actively contribute towards the learning process have shown improved performance when compared to fully automated ones. This may be so on scenarios of Big Data, scenarios in which the input is a data stream, or when there is concept drift. In this paper, we present a system that learns and adapts in real-time by continuously incorporating user feedback, in a fully autonomous way. Moreover, it allows for users to manage variables (e.g. add, edit, remove), reflecting these changes on-the-fly in the Machine Learning pipeline. This paper describes the main functionalities of the system, which despite being of general-purpose, is being developed in the context of a project in the domain of financial fraud detection

    TAPESTRY:A Blockchain based Service for Trusted Interaction Online

    Get PDF
    We present a novel blockchain based service for proving the provenance of online digital identity, exposed as an assistive tool to help non-expert users make better decisions about whom to trust online. Our service harnesses the digital personhood (DP); the longitudinal and multi-modal signals created through users' lifelong digital interactions, as a basis for evidencing the provenance of identity. We describe how users may exchange trust evidence derived from their DP, in a granular and privacy-preserving manner, with other users in order to demonstrate coherence and longevity in their behaviour online. This is enabled through a novel secure infrastructure combining hybrid on- and off-chain storage combined with deep learning for DP analytics and visualization. We show how our tools enable users to make more effective decisions on whether to trust unknown third parties online, and also to spot behavioural deviations in their own social media footprints indicative of account hijacking.Comment: Submitted to IEEE TSC Special Issue on Blockchain Services, May 201

    Product Returns in a Digital Era: The Role of Multidimensional Cognitive Dissonance, Regret, and Buying Context in the Post-purchase Appraisal Process

    Get PDF
    The retailing industry is battling a behemoth – the escalating problem of product returns. The problem is of a graver import for e-tailers. However, the underlying cognitive and affective appraisal process that leads to product returns in case of online purchase still remains unclear. The liberal product returns environment in the context of online purchase has led consumers to proactively consider the option of decision reversal. Nevertheless, the impact of the initial buying context on the post-purchase appraisal process has been neglected in previous studies. To bridge the gaps found after evaluating the current gamut of research work conducted on this topic, a mixed-method approach was employed in the present study. Using in-depth semi-structured interviews (N = 42), the first qualitative study identified three online purchase situations (unplanned, purchase-for-trial and opportunism buying) that frequently provoke product returns. Additionally, the qualitative uncovered the salient post-purchase appraisal factors. To empirically test the underlying appraisal process and the differences caused by the buying situations, a quantitative study was conducted, using scenario-based experiment (N = 620). Findings suggest that contrary to recent studies (e.g., Lee, 2015; Powers & Jack, 2013), cognitive dissonance is not the immediate cause of product returns. It is the affective factor, regret, which leads to decision reversal. Additionally, in opposition to the claim of previous literature that high coping potential reduces stress, this study suggests that the ability to reverse the decision actually increases regret and, in turn, leads to product returns. Results also indicate that buying context (e.g., different buying situations) causes difference in serial mediation pathways from both primary and secondary appraisal to product returns likelihood. E-tailers should utilise consumers’ behavioural profile in order to classify different consumer groups and tailor the means to manage product returns accordingly

    Future Intelligent Systems and Networks 2019

    Get PDF
    In this Special Issue, we present current developments and future directions of future intelligent systems and networks. This is the second Special Issue regarding the future of the Internet. This subject remains of interest for firms applying technological possibilities to promote more innovative business models. This Special Issue widens the application of intelligent systems and networks to firms so that they can evolve to more innovative models. The five contributions highlight useful applications, business models, or innovative practices based on intelligent systems and networks. We hope our findings become an inspiration for firms operating in various industries

    Click fraud : how to spot it, how to stop it?

    Get PDF
    Online search advertising is currently the greatest source of revenue for many Internet giants such as Google™, Yahoo!™, and Bing™. The increased number of specialized websites and modern profiling techniques have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth is however click fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. Most academics and consultants who study online advertising estimate that 15% to 35% of ads in pay per click (PPC) online advertising systems are not authentic. In the first two quarters of 2010, US marketers alone spent 5.7billiononPPCads,wherePPCadsarebetween45and50percentofallonlineadspending.Onaverageabout5.7 billion on PPC ads, where PPC ads are between 45 and 50 percent of all online ad spending. On average about 1.5 billion is wasted due to click-fraud. These fraudulent clicks are believed to be initiated by users in poor countries, or botnets, who are trained to click on specific ads. For example, according to a 2010 study from Information Warfare Monitor, the operators of Koobface, a program that installed malicious software to participate in click fraud, made over $2 million in just over a year. The process of making such illegitimate clicks to generate revenue is called click-fraud. Search engines claim they filter out most questionable clicks and either not charge for them or reimburse advertisers that have been wrongly billed. However this is a hard task, despite the claims that brokers\u27 efforts are satisfactory. In the simplest scenario, a publisher continuously clicks on the ads displayed on his own website in order to make revenue. In a more complicated scenario. a travel agent may hire a large, globally distributed, botnet to click on its competitor\u27s ads, hence depleting their daily budget. We analyzed those different types of click fraud methods and proposed new methodologies to detect and prevent them real time. While traditional commercial approaches detect only some specific types of click fraud, Collaborative Click Fraud Detection and Prevention (CCFDP) system, an architecture that we have implemented based on the proposed methodologies, can detect and prevents all major types of click fraud. The proposed solution analyzes the detailed user activities on both, the server side and client side collaboratively to better describe the intention of the click. Data fusion techniques are developed to combine evidences from several data mining models and to obtain a better estimation of the quality of the click traffic. Our ideas are experimented through the development of the Collaborative Click Fraud Detection and Prevention (CCFDP) system. Experimental results show that the CCFDP system is better than the existing commercial click fraud solution in three major aspects: 1) detecting more click fraud especially clicks generated by software; 2) providing prevention ability; 3) proposing the concept of click quality score for click quality estimation. In the CCFDP initial version, we analyzed the performances of the click fraud detection and prediction model by using a rule base algorithm, which is similar to most of the existing systems. We have assigned a quality score for each click instead of classifying the click as fraud or genuine, because it is hard to get solid evidence of click fraud just based on the data collected, and it is difficult to determine the real intention of users who make the clicks. Results from initial version revealed that the diversity of CF attack Results from initial version revealed that the diversity of CF attack types makes it hard for a single counter measure to prevent click fraud. Therefore, it is important to be able to combine multiple measures capable of effective protection from click fraud. Therefore, in the CCFDP improved version, we provide the traffic quality score as a combination of evidence from several data mining algorithms. We have tested the system with a data from an actual ad campaign in 2007 and 2008. We have compared the results with Google Adwords reports for the same campaign. Results show that a higher percentage of click fraud present even with the most popular search engine. The multiple model based CCFDP always estimated less valid traffic compare to Google. Sometimes the difference is as high as 53%. Detection of duplicates, fast and efficient, is one of the most important requirement in any click fraud solution. Usually duplicate detection algorithms run in real time. In order to provide real time results, solution providers should utilize data structures that can be updated in real time. In addition, space requirement to hold data should be minimum. In this dissertation, we also addressed the problem of detecting duplicate clicks in pay-per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter (TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive rate of TSBF is less than 1% and it does not have false negatives. Space requirement of TSBF is minimal among other solutions. Even though Buffering does not have either false positives or false negatives its space requirement increases exponentially with the size of the stream data size. When the false positive rate of the FPBuffering is set to 1% its false negative rate jumps to around 5%, which will not be tolerated by most of the streaming data applications. We also compared the TSBF results with CBF. TSBF uses only half the space or less than standard CBF with the same false positive probability. One of the biggest successes with CCFDP is the discovery of new mercantile click bot, the Smart ClickBot. We presented a Bayesian approach for detecting the Smart ClickBot type clicks. The system combines evidence extracted from web server sessions to determine the final class of each click. Some of these evidences can be used alone, while some can be used in combination with other features for the click bot detection. During training and testing we also addressed the class imbalance problem. Our best classifier shows recall of 94%. and precision of 89%, with F1 measure calculated as 92%. The high accuracy of our system proves the effectiveness of the proposed methodology. Since the Smart ClickBot is a sophisticated click bot that manipulate every possible parameters to go undetected, the techniques that we discussed here can lead to detection of other types of software bots too. Despite the enormous capabilities of modern machine learning and data mining techniques in modeling complicated problems, most of the available click fraud detection systems are rule-based. Click fraud solution providers keep the rules as a secret weapon and bargain with others to prove their superiority. We proposed validation framework to acquire another model of the clicks data that is not rule dependent, a model that learns the inherent statistical regularities of the data. Then the output of both models is compared. Due to the uniqueness of the CCFDP system architecture, it is better than current commercial solution and search engine/ISP solution. The system protects Pay-Per-Click advertisers from click fraud and improves their Return on Investment (ROI). The system can also provide an arbitration system for advertiser and PPC publisher whenever the click fraud argument arises. Advertisers can gain their confidence on PPC advertisement by having a channel to argue the traffic quality with big search engine publishers. The results of this system will booster the internet economy by eliminating the shortcoming of PPC business model. General consumer will gain their confidence on internet business model by reducing fraudulent activities which are numerous in current virtual internet world

    Anomaly Detection In Blockchain

    Get PDF
    Anomaly detection has been a well-studied area for a long time. Its applications in the financial sector have aided in identifying suspicious activities of hackers. However, with the advancements in the financial domain such as blockchain and artificial intelligence, it is more challenging to deceive financial systems. Despite these technological advancements many fraudulent cases have still emerged. Many artificial intelligence techniques have been proposed to deal with the anomaly detection problem; some results appear to be considerably assuring, but there is no explicit superior solution. This thesis leaps to bridge the gap between artificial intelligence and blockchain by pursuing various anomaly detection techniques on transactional network data of a public financial blockchain named 'Bitcoin'. This thesis also presents an overview of the blockchain technology and its application in the financial sector in light of anomaly detection. Furthermore, it extracts the transactional data of bitcoin blockchain and analyses for malicious transactions using unsupervised machine learning techniques. A range of algorithms such as isolation forest, histogram based outlier detection (HBOS), cluster based local outlier factor (CBLOF), principal component analysis (PCA), K-means, deep autoencoder networks and ensemble method are evaluated and compared
    corecore