474 research outputs found

    Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling. A new method for plant height and biomass estimation based on RGB-imaging

    Get PDF
    Data collection with unmanned aerial vehicles (UAVs) fills a gap on the observational scale in re-mote sensing by delivering high spatial and temporal resolution data that is required in crop growth monitoring. The latter is part of precision agriculture that facilitates detection and quan-tification of within-field variability to support agricultural management decisions such as effective fertilizer application. Biophysical parameters such as plant height and biomass are monitored to describe crop growth and serve as an indicator for the final crop yield. Multi-temporal crop surface models (CSMs) provide spatial information on plant height and plant growth. This study aims to examine whether (1) UAV-based CSMs are suitable for plant height modelling, (2) the derived plant height can be used for biomass estimation, and (3) the combination of plant height and vegetation indices has an added value for biomass estimation. To achieve these objectives, UAV-flight campaigns were carried out with a red-green-blue (RGB) camera over controlled field experiments on three study sites, two for summer barley in Western Germany and one for rice in Northeast China. High-resolution, multi-temporal CSMs were derived from the images by using computer vision software following the structure from motion (SfM) approach. The results show that plant height and plant growth can be accurately modelled with UAV-based CSMs from RGB imaging. To maximise the CSMs’ quality, accurate flight planning and well-considered data collection is necessary. Furthermore, biomass is successfully estimated from the derived plant height, with the restriction that results are based on a single-year dataset and thus require further validation. Nevertheless, plant height shows robust estimates in comparison with various vegetation indices. As for biomass estimation in early growth stages additional po-tential is found in exploiting visible band vegetation indices from UAV-based red-green-blue (RGB) imaging. However, the results are limited due to the use of uncalibrated images. Combining visible band vegetation indices and plant height does not significantly improve the performance of the biomass models. This study demonstrates that UAV-based RGB imaging delivers valuable data for productive crop monitoring. The demonstrated results for plant height and biomass estimation open new possi-bilities in precision agriculture by capturing in-field variability

    Assessment of vegetation Ă­ndices derived from UAV images for predicting biometric variables in bean during ripening stage

    Get PDF
    Here, we report the prediction of vegetative stages variables of canary bean crop employing RGB and multispectral images obtained from UAV during the ripening stage, correlating the vegetation indices with biometric variables measured manually in the field. Results indicated a highly significant correlation of plant height with eight vegetation indices derived from UAV images from the canary bean, which were evaluated by multiple regression models, obtaining a maximum correlation of R2 = 0.79. On the other hand, the estimated indices of multispectral images did not show significant correlations

    Digital phenotyping and genotype-to-phenotype (G2P) models to predict complex traits in cereal crops

    Get PDF
    The revolution in digital phenotyping combined with the new layers of omics and envirotyping tools offers great promise to improve selection and accelerate genetic gains for crop improvement. This chapter examines the latest methods involving digital phenotyping tools to predict complex traits in cereals crops. The chapter has two parts. In the first part, entitled “Digital phenotyping as a tool to support breeding programs”, the secondary phenotypes measured by high-throughput plant phenotyping that are potentially useful for breeding are reviewed. In the second part, “Implementing complex G2P models in breeding programs”, the integration of data from digital phenotyping into genotype to phenotype (G2P) models to improve the prediction of complex traits using genomic information is discussed. The current status of statistical models to incorporate secondary traits in univariate and multivariate models, as well as how to better handle longitudinal (for example light interception, biomass accumulation, canopy height) traits, is reviewe

    The acquisition of Hyperspectral Digital Surface Models of crops from UAV snapshot cameras

    Get PDF
    This thesis develops a new approach to capture information about agricultural crops by utilizing advances in the field of robotics, sensor technology, computer vision and photogrammetry: Hyperspectral digital surface models (HS DSMs) generated with UAV snapshot cameras are a representation of a surface in 3D space linked with hyperspectral information emitted and reflected by the objects covered by that surface. The overall research aim of this thesis is to evaluate if HS DSMs are suited for supporting a site-specific crop management. Based on six research studies, three research objectives are discussed for this evaluation. Firstly the influences of environmental effects, the sensing system and data processing of the spectral data within HS DSMs are discussed. Secondly, the comparability of HS DSMs to data from other remote sensing methods is investigated and thirdly their potential to support site-specific crop management is evaluated. Most data within this thesis was acquired at a plant experimental-plot experiment in Klein-Altendorf, Germany, with six different barley varieties and two different fertilizer treatments in the growing seasons of 2013 and 2014. In total, 22 measurement campaigns were carried out in the context of this thesis. HS DSMs acquired with the hyperspectral snapshot cameras Cubert UHD 185-Firefly show great potential for practical applications. The combination of UAVs and the UHD allowed data to be captured at a high spatial, spectral and temporal resolution. The spatial resolution allowed detection of small-scale heterogeneities within the plant population. Additionally, with the spectral and 3D information contained in HS DSMs, plant parameters such as chlorophyll, biomass and plant height could be estimated within individual, and across different growing stages. The techniques developed in this thesis therefore offer a significant contribution towards increasing cropping efficiency through the support of site-specific management

    Application of UAV multispectral imaging for determining the characteristics of maize vegetation

    Get PDF
    Received: February 1st, 2023 ; Accepted: April 25th, 2023 ; Published: May 10th, 2023 ; Correspondence: [email protected] in forage maize (Zea mays L.) cultivation for livestock feed has grown in northern conditions. In addition, it is important to develop methods and tools to monitor crop development and other characteristics of the crop. For these purposes UAVs are very efficient and versatile tools. UAVs can be equipped with a variety of sensors like lidar or different types of cameras. Several studies have been conducted where data collected by UAVs are used to estimate different crop properties like yield and biomass. In this research, a forage maize field experiment was studied to examine how well the aerial multispectral data correlated with the different properties of the vegetation. The field test site is located in Helsinki, Finland. A multispectral camera (MicaSense Rededge 3) was used to take images from five spectral bands (Red, Green, Blue, Rededge and NIR). All the images were processed with Pix4D software to generate orthomosaic images. Several vegetation indices were calculated from the five spectral bands. During the growing season, crop height, chlorophyll content, leaf area index (LAI), fresh and dry matter biomass were measured from the vegetation. From the five spectral bands, Rededge had the highest correlation with fresh biomass (R2 = 0.273). The highest correlation for a vegetation index was found between NDRE and chlorophyll content (R2 = 0.809). A multiple linear regression (MLR) model using selected spectral bands and vegetation indices as inputs showed high correlations with the field measurements

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Evaluation of the Influence of Field Conditions on Aerial Multispectral Images and Vegetation Indices

    Get PDF
    Remote sensing is a method used for monitoring and measuring agricultural crop fields. Unmanned aerial vehicles (UAV) are used to effectively monitor crops via different camera technologies. Even though aerial imaging can be considered a rather straightforward process, more focus should be given to data quality and processing. This research focuses on evaluating the influences of field conditions on raw data quality and commonly used vegetation indices. The aerial images were taken with a custom-built UAV by using a multispectral camera at four different times of the day and during multiple times of the season. Measurements were carried out in the summer seasons of 2019 and 2020. The imaging data were processed with different software to calculate vegetation indices for 10 reference areas inside the fields. The results clearly show that NDVI (normalized difference vegetation index) was the least affected vegetation index by the field conditions. The coefficient of variation (CV) was determined to evaluate the variations in vegetation index values within a day. Vegetation index TVI (transformed vegetation index) and NDVI had coefficient of variation values under 5%, whereas with GNDVI (green normalized difference vegetation index), the value was under 10%. Overall, the vegetation indices that include near-infrared (NIR) bands are less affected by field condition changes

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits-A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R-2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R-2: 0.75 to 0.84). These results indicate the imaging system's potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed.Peer reviewe

    Investigating the Potential of a Newly Developed UAV-Mounted VNIR/SWIR Imaging System for Monitoring Crop Traits—A Case Study for Winter Wheat

    Get PDF
    UAV-based multispectral multi-camera systems are widely used in scientific research for non-destructive crop traits estimation to optimize agricultural management decisions. These systems typically provide data from the visible and near-infrared (VNIR) domain. However, several key absorption features related to biomass and nitrogen (N) are located in the short-wave infrared (SWIR) domain. Therefore, this study investigates a novel multi-camera system prototype that addresses this spectral gap with a sensitivity from 600 to 1700 nm by implementing dedicated bandpass filter combinations to derive application-specific vegetation indices (VIs). In this study, two VIs, GnyLi and NRI, were applied using data obtained on a single observation date at a winter wheat field experiment located in Germany. Ground truth data were destructively sampled for the entire growing season. Likewise, crop heights were derived from UAV-based RGB image data using an improved approach developed within this study. Based on these variables, regression models were derived to estimate fresh and dry biomass, crop moisture, N concentration, and N uptake. The relationships between the NIR/SWIR-based VIs and the estimated crop traits were successfully evaluated (R2: 0.57 to 0.66). Both VIs were further validated against the sampled ground truth data (R2: 0.75 to 0.84). These results indicate the imaging system’s potential for monitoring crop traits in agricultural applications, but further multitemporal validations are needed

    Evaluation of the Influence of Field Conditions on Aerial Multispectral Images and Vegetation Indices

    Get PDF
    Remote sensing is a method used for monitoring and measuring agricultural crop fields. Unmanned aerial vehicles (UAV) are used to effectively monitor crops via different camera technologies. Even though aerial imaging can be considered a rather straightforward process, more focus should be given to data quality and processing. This research focuses on evaluating the influences of field conditions on raw data quality and commonly used vegetation indices. The aerial images were taken with a custom-built UAV by using a multispectral camera at four different times of the day and during multiple times of the season. Measurements were carried out in the summer seasons of 2019 and 2020. The imaging data were processed with different software to calculate vegetation indices for 10 reference areas inside the fields. The results clearly show that NDVI (normalized difference vegetation index) was the least affected vegetation index by the field conditions. The coefficient of variation (CV) was determined to evaluate the variations in vegetation index values within a day. Vegetation index TVI (transformed vegetation index) and NDVI had coefficient of variation values under 5%, whereas with GNDVI (green normalized difference vegetation index), the value was under 10%. Overall, the vegetation indices that include near-infrared (NIR) bands are less affected by field condition changes
    • …
    corecore