880 research outputs found

    A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Get PDF
    [EN] Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.Azzouz, A.; Ennigrou, M.; Ben Said, L. (2017). A hybrid algorithm for flexible job-shop scheduling problem with setup times. International Journal of Production Management and Engineering. 5(1):23-30. doi:10.4995/ijpme.2017.6618SWORD233051Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345-378. doi:10.1016/j.ejor.2015.04.004Azzouz, A., Ennigrou, M., & Jlifi, B. (2015). Diversifying TS using GA in Multi-agent System for Solving Flexible Job Shop Problem. Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. doi:10.5220/0005511000940101Azzouz, A., Ennigrou, M., Jlifi, B., & Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving Flexible Job Shop Problem. 2012 11th Mexican International Conference on Artificial Intelligence. doi:10.1109/micai.2012.12Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15. doi:10.1016/j.jmsy.2011.02.004Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:10.1007/bf02023073Cheung, W., & Zhou, H. (2001). Annals of Operations Research, 107(1/4), 65-81. doi:10.1023/a:1014990729837Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342. doi:10.1007/s10845-007-0026-8González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-Third International Conference on Automated, pp. 91-99.Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4), 205-215. doi:10.1007/bf01719451Imanipour, N. (2006). Modeling&Solving Flexible Job Shop Problem With Sequence Dependent Setup Times. 2006 International Conference on Service Systems and Service Management. doi:10.1109/icsssm.2006.320680KIM, S. C., & BOBROWSKI, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. International Journal of Production Research, 32(7), 1503-1520. doi:10.1080/00207549408957019Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the International MultiConference of Engineers and Computer Scientists,2, 978-988.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. doi:10.1080/00207543.2012.746480Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170-181. doi:10.1007/s00170-008-1693-0Najid, N. M., Dauzere-Peres, S., & Zaidat, A. (s. f.). A modified simulated annealing method for flexible job shop scheduling problem. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2002.1176334Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. doi:10.1007/s10845-015-1039-3Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp. 15-22.Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35(10), 3202-3212. doi:10.1016/j.cor.2007.02.014Sadrzadeh, A. (2013). Development of Both the AIS and PSO for Solving the Flexible Job Shop Scheduling Problem. Arabian Journal for Science and Engineering, 38(12), 3593-3604. doi:10.1007/s13369-013-0625-ySaidi-Mehrabad, M., & Fattahi, P. (2006). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6), 563-570. doi:10.1007/s00170-005-0375-4Vilcot, G., & Billaut, J.-C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 49(23), 6963-6980. doi:10.1080/00207543.2010.526016Shi-Jin, W., Bing-Hai, Z., & Li-Feng, X. (2008). A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. International Journal of Production Research, 46(11), 3027-3058. doi:10.1080/00207540600988105Wang, S., & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3), 436-447. doi:10.1016/j.cie.2010.05.016Zandieh, M., Yazdani, M., Gholami, M., & Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem. Journal of Applied Sciences, 9(4), 662-670. doi:10.3923/jas.2009.662.670Zambrano Rey, G., Bekrar, A., Prabhu, V., & Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. doi:10.1080/00207543.2014.881575Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021Zhou, Y., Li, B., & Yang, J. (2005). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm. The International Journal of Advanced Manufacturing Technology, 30(1-2), 105-111. doi:10.1007/s00170-005-0022-0Ziaee, M. (2013). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 71(1-4), 519-528. doi:10.1007/s00170-013-5510-zZribi, N., Kacem, I., Kamel, A. E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(4), 652-661. doi:10.1109/tsmcc.2007.89749

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Meta-Heurisitics for Job-Shop Rescheduling

    Get PDF

    Industry 4.0 - Shop-Floor Negotiation

    Get PDF

    Swarm intelligence for scheduling: a review

    Get PDF
    Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization

    Job shop scheduling with makespan objective: A heuristic approach

    Get PDF
    Job shop has been considered as one of the most challenging scheduling problems and there are literally tremendous efforts on reducing the complexity of solution procedure for solving job shop problem. This paper presents a heuristic method to minimize makespan for different jobs in a job shop scheduling. The proposed model is based on a constructive procedure to obtain good quality schedules, very quickly. The performance of the proposed model of this paper is examined on standard benchmarks from the literature in order to evaluate its performance. Computational results show that, despite its simplicity, the proposed heuristic is computationally efficient and practical approach for the problem
    • …
    corecore