1,450 research outputs found

    BIOMEDICAL WORD SENSE DISAMBIGUATION WITH NEURAL WORD AND CONCEPT EMBEDDINGS

    Get PDF
    Addressing ambiguity issues is an important step in natural language processing (NLP) pipelines designed for information extraction and knowledge discovery. This problem is also common in biomedicine where NLP applications have become indispensable to exploit latent information from biomedical literature and clinical narratives from electronic medical records. In this thesis, we propose an ensemble model that employs recent advances in neural word embeddings along with knowledge based approaches to build a biomedical word sense disambiguation (WSD) system. Specifically, our system identities the correct sense from a given set of candidates for each ambiguous word when presented in its context (surrounding words). We use the MSH WSD dataset, a well known public dataset consisting of 203 ambiguous terms each with nearly 200 different instances and an average of two candidate senses represented by concepts in the unified medical language system (UMLS). We employ a popular biomedical concept, Our linear time (in terms of number of senses and context length) unsupervised and knowledge based approach improves over the state-of-the-art methods by over 3% in accuracy. A more expensive approach based on the k-nearest neighbor framework improves over prior best results by 5% in accuracy. Our results demonstrate that recent advances in neural dense word vector representations offer excellent potential for solving biomedical WSD

    Boosting Applied to Word Sense Disambiguation

    Get PDF
    In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are studied. The best variant, which we call LazyBoosting, is tested on the largest sense-tagged corpus available containing 192,800 examples of the 191 most frequent and ambiguous English words. Again, boosting compares favourably to the other benchmark algorithms.Comment: 12 page

    NASARI: a novel approach to a Semantically-Aware Representation of items

    Get PDF
    The semantic representation of individual word senses and concepts is of fundamental importance to several applications in Natural Language Processing. To date, concept modeling techniques have in the main based their representation either on lexicographic resources, such as WordNet, or on encyclopedic resources, such as Wikipedia. We propose a vector representation technique that combines the complementary knowledge of both these types of resource. Thanks to its use of explicit semantics combined with a novel cluster-based dimensionality reduction and an effective weighting scheme, our representation attains state-of-the-art performance on multiple datasets in two standard benchmarks: word similarity and sense clustering. We are releasing our vector representations at http://lcl.uniroma1.it/nasari/
    • …
    corecore