117,491 research outputs found

    Rapid Online Analysis of Local Feature Detectors and Their Complementarity

    Get PDF
    A vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability. The metric is shown to provide a measure of complementarity for combinations of detectors, correctly reflecting the underlying principles of individual detectors. Qualitative results on well-established datasets for several state-of-the-art detectors are presented based on the proposed measure. Using a hypothesis testing approach and a newly-acquired, larger image database, statistically-significant performance differences are identified. Different detector pairs and triplets are examined quantitatively and the results provide a useful guideline for combining detectors in applications that require a reasonable spatial distribution of image features. A principled framework for combining feature detectors in these applications is also presented. Timing results reveal the potential of the metric for online applications. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Multilayer Complex Network Descriptors for Color-Texture Characterization

    Full text link
    A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers.Comment: 20 pages, 7 figures and 4 table

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System

    Knowledge-rich Image Gist Understanding Beyond Literal Meaning

    Full text link
    We investigate the problem of understanding the message (gist) conveyed by images and their captions as found, for instance, on websites or news articles. To this end, we propose a methodology to capture the meaning of image-caption pairs on the basis of large amounts of machine-readable knowledge that has previously been shown to be highly effective for text understanding. Our method identifies the connotation of objects beyond their denotation: where most approaches to image understanding focus on the denotation of objects, i.e., their literal meaning, our work addresses the identification of connotations, i.e., iconic meanings of objects, to understand the message of images. We view image understanding as the task of representing an image-caption pair on the basis of a wide-coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist detection as a concept-ranking problem with image-caption pairs as queries. To enable a thorough investigation of the problem of gist understanding, we produce a gold standard of over 300 image-caption pairs and over 8,000 gist annotations covering a wide variety of topics at different levels of abstraction. We use this dataset to experimentally benchmark the contribution of signals from heterogeneous sources, namely image and text. The best result with a Mean Average Precision (MAP) of 0.69 indicate that by combining both dimensions we are able to better understand the meaning of our image-caption pairs than when using language or vision information alone. We test the robustness of our gist detection approach when receiving automatically generated input, i.e., using automatically generated image tags or generated captions, and prove the feasibility of an end-to-end automated process
    • …
    corecore