92 research outputs found

    Tactful Networking: Humans in the Communication Loop

    Get PDF
    International audienceThis survey discusses the human-perspective into networking through the Tactful Networking paradigm, whose goal is to add perceptive senses to the network by assigning it with human-like capabilities of observation, interpretation, and reaction to daily-life features and associated entities. To achieve this, knowledge extracted from inherent human behavior in terms of routines, personality, interactions, and others is leveraged, empowering the learning and prediction of user needs to improve QoE and system performance while respecting privacy and fostering new applications and services. Tactful Networking groups solutions from literature and innovative interdisciplinary human aspects studied in other areas. The paradigm is motivated by mobile devices' pervasiveness and increasing presence as a sensor in our daily social activities. With the human element in the foreground, it is essential: (i) to center big data analytics around individuals; (ii) to create suitable incentive mechanisms for user participation; (iii) to design and evaluate both humanaware and system-aware networking solutions; and (iv) to apply prior and innovative techniques to deal with human-behavior sensing and learning. This survey reviews the human aspect in networking solutions through over a decade, followed by discussing the tactful networking impact through literature in behavior analysis and representative examples. This paper also discusses a framework comprising data management, analytics, and privacy for enhancing human raw-data to assist Tactful Networking solutions. Finally, challenges and opportunities for future research are presented

    A Survey of Deep Learning for Data Caching in Edge Network

    Full text link
    The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user demand for popular content can be satisfied by proactively caching it at the network edge, i.e, at close proximity to the users. In addition to model based caching schemes learning-based edge caching optimizations has recently attracted significant attention and the aim hereafter is to capture these recent advances for both model based and data driven techniques in the area of proactive caching. This paper summarizes the utilization of deep learning for data caching in edge network. We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure. Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning. Furthermore, a comparison of state-of-the-art literature is provided from the aspects of caching topics and deep learning methods. Finally, we discuss research challenges and future directions of applying deep learning for cachin

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network
    corecore