3,342 research outputs found

    Combining semantic and geometric features for object class segmentation of indoor scenes

    Get PDF
    Scene understanding is a necessary prerequisite for robots acting autonomously in complex environments. Low-cost RGB-D cameras such as Microsoft Kinect enabled new methods for analyzing indoor scenes and are now ubiquitously used in indoor robotics. We investigate strategies for efficient pixelwise object class labeling of indoor scenes that combine both pretrained semantic features transferred from a large color image dataset and geometric features, computed relative to the room structures, including a novel distance-from-wall feature, which encodes the proximity of scene points to a detected major wall of the room. We evaluate our approach on the popular NYU v2 dataset. Several deep learning models are tested, which are designed to exploit different characteristics of the data. This includes feature learning with two different pooling sizes. Our results indicate that combining semantic and geometric features yields significantly improved results for the task of object class segmentation.This research is partially funded by the CSIC project MANIPlus (201350E102), and the project RobInstruct (TIN2014-58178-R).Peer reviewe

    SEGCloud: Semantic Segmentation of 3D Point Clouds

    Full text link
    3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.Comment: Accepted as a spotlight at the International Conference of 3D Vision (3DV 2017

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models
    corecore