233 research outputs found

    A Gentle Non-Disjoint Combination of Satisfiability Procedures (Extended Version)

    Get PDF
    A satisfiability problem is often expressed in a combination of theories, and a natural approach consists in solving the problem by combining the satisfiability procedures available for the component theories. This is the purpose of the combination method introduced by Nelson and Oppen. However, in its initial presentation, the Nelson-Oppen combination method requires the theories to be signature-disjoint and stably infinite (to guarantee the existence of an infinite model). The notion of gentle theory has been introduced in the last few years as one solution to go beyond the restriction of stable infiniteness, but in the case of disjoint theories. In this paper, we adapt the notion of gentle theory to the non-disjoint combination of theories sharing only unary predicates (plus constants and the equality). Like in the disjoint case, combining two theories, one of them being gentle, requires some minor assumptions on the other one. We show that major classes of theories, i.e.\ Löwenheim and Bernays-Schönfinkel-Ramsey, satisfy the appropriate notion of gentleness introduced for this particular non-disjoint combination framework

    A Rewriting Approach to the Combination of Data Structures with Bridging Theories

    Get PDF
    International audienceWe introduce a combination method Ă  la Nelson-Oppen to solve the satisfiability problem modulo a non-disjoint union of theories connected with bridging functions. The combination method is particularly useful to handle verification conditions involving functions defined over inductive data structures. We investigate the problem of determining the data structure theories for which this combination method is sound and complete. Our completeness proof is based on a rewriting approach where the bridging function is defined as a term rewrite system, and the data structure theory is given by a basic congruence relation. Our contribution is to introduce a class of data structure theories that are combinable with a disjoint target theory via an inductively defined bridging function. This class includes the theory of equality, the theory of absolutely free data structures, and all the theories in between. Hence, our non-disjoint combination method applies to many classical data structure theories admitting a rewrite-based satisfiability procedure

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    CDSAT for nondisjoint theories with shared predicates: arrays with abstract length

    Get PDF
    CDSAT (Conflict-Driven Satisfiability) is a paradigm for theory combination that works by coordinating theory modules to reason in the union of the theories in a conflict-driven manner. We generalize CDSAT to the case of nondisjoint theories by presenting a new CDSAT theory module for a theory of arrays with abstract length, which is an abstraction of the theory of arrays with length. The length function is a bridging function as it forces theories to share symbols, but the proposed abstraction limits the sharing to one predicate symbol. The CDSAT framework handles shared predicates with minimal changes, and the new module satisfies the CDSAT requirements, so that completeness is preserved

    Politeness and Combination Methods for Theories with Bridging Functions

    Get PDF
    International audienceThe Nelson-Oppen combination method is ubiquitous in Satisfiability Modulo Theories solvers. However, one of its major drawbacks is to be restricted to disjoint unions of theories. We investigate the problem of extending this combination method to particular non-disjoint unions of theories defined by connecting disjoint theories via bridging functions. A possible application is to solve verification problems expressed in a combination of data structures connected to arithmetic with bridging functions such as the length of lists and the size of trees. We present a sound and complete combination method Ă  la Nelson-Oppen for the theory of absolutely free data structures, including lists and trees. This combination procedure is then refined for standard interpretations. The resulting theory has a nice politeness property, enabling combinations with arbitrary decidable theories of elements. In addition, we have identified a class of polite data structure theories for which the combination method remains sound and complete. This class includes all the subtheories of absolutely free data structures (e.g, the empty theory, injectivity, projection). Again, the politeness property holds for any theory in this class, which can thus be combined with bridging functions and arbitrary decidable theories of elements. This illustrates the significance of politeness in the context of non-disjoint combinations of theories

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Query Answering in Probabilistic Data and Knowledge Bases

    Get PDF
    Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory
    • …
    corecore