280 research outputs found

    Optimization issues in machine learning of coreference resolution

    Get PDF

    Incorporation of constraints to improve machine learning approaches on coreference resolution

    Get PDF
    Master'sMASTER OF SCIENC

    EVENT COREFERENCE RESOLUTION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems

    Learning Taxonomic Relations from Heterogeneous Evidence

    Get PDF
    Cimiano P, Schmidt-Thieme L, Pivk A, Staab S. Learning Taxonomic Relations from Heterogeneous Evidence. In: Proceedings of the ECAI 2004 Ontology Learning and Population Workshop. 2004

    Robustness in Coreference Resolution

    Get PDF
    Coreference resolution is the task of determining different expressions of a text that refer to the same entity. The resolution of coreferring expressions is an essential step for automatic interpretation of the text. While coreference information is beneficial for various NLP tasks like summarization, question answering, and information extraction, state-of-the-art coreference resolvers are barely used in any of these tasks. The problem is the lack of robustness in coreference resolution systems. A coreference resolver that gets higher scores on the standard evaluation set does not necessarily perform better than the others on a new test set. In this thesis, we introduce robustness in coreference resolution by (1) introducing a reliable evaluation framework for recognizing robust improvements, and (2) proposing a solution that results in robust coreference resolvers. As the first step of setting up the evaluation framework, we introduce a reliable evaluation metric, called LEA, that overcomes the drawbacks of the existing metrics. We analyze LEA based on various types of errors in coreference outputs and show that it results in reliable scores. In addition to an evaluation metric, we also introduce an evaluation setting in which we disentangle coreference evaluations from parsing complexities. Coreference resolution is affected by parsing complexities for detecting the boundaries of expressions that have complex syntactic structures. We reduce the effect of parsing errors in coreference evaluation by automatically extracting a minimum span for each expression. We then emphasize the importance of out-of-domain evaluations and generalization in coreference resolution and discuss the reasons behind the poor generalization of state-of-the-art coreference resolvers. Finally, we show that enhancing state-of-the-art coreference resolvers with linguistic features is a promising approach for making coreference resolvers robust across domains. The incorporation of linguistic features with all their values does not improve the performance. However, we introduce an efficient pattern mining approach, called EPM, that mines all feature-value combinations that are discriminative for coreference relations. We then only incorporate feature-values that are discriminative for coreference relations. By employing EPM feature-values, performance improves significantly across various domains

    Leveraging distant supervision for improved named entity recognition

    Full text link
    Les techniques d'apprentissage profond ont fait un bond au cours des dernières années, et ont considérablement changé la manière dont les tâches de traitement automatique du langage naturel (TALN) sont traitées. En quelques années, les réseaux de neurones et les plongements de mots sont rapidement devenus des composants centraux à adopter dans le domaine. La supervision distante (SD) est une technique connue en TALN qui consiste à générer automatiquement des données étiquetées à partir d'exemples partiellement annotés. Traditionnellement, ces données sont utilisées pour l'entraînement en l'absence d'annotations manuelles, ou comme données supplémentaires pour améliorer les performances de généralisation. Dans cette thèse, nous étudions comment la supervision distante peut être utilisée dans un cadre d'un TALN moderne basé sur l'apprentissage profond. Puisque les algorithmes d'apprentissage profond s'améliorent lorsqu'une quantité massive de données est fournie (en particulier pour l'apprentissage des représentations), nous revisitons la génération automatique des données avec la supervision distante à partir de Wikipédia. On applique des post-traitements sur Wikipédia pour augmenter la quantité d'exemples annotés, tout en introduisant une quantité raisonnable de bruit. Ensuite, nous explorons différentes méthodes d'utilisation de données obtenues par supervision distante pour l'apprentissage des représentations, principalement pour apprendre des représentations de mots classiques (statistiques) et contextuelles. À cause de sa position centrale pour de nombreuses applications du TALN, nous choisissons la reconnaissance d'entité nommée (NER) comme tâche principale. Nous expérimentons avec des bancs d’essai NER standards et nous observons des performances état de l’art. Ce faisant, nous étudions un cadre plus intéressant, à savoir l'amélioration des performances inter-domaines (généralisation).Recent years have seen a leap in deep learning techniques that greatly changed the way Natural Language Processing (NLP) tasks are tackled. In a couple of years, neural networks and word embeddings quickly became central components to be adopted in the domain. Distant supervision (DS) is a well-used technique in NLP to produce labeled data from partially annotated examples. Traditionally, it was mainly used as training data in the absence of manual annotations, or as additional training data to improve generalization performances. In this thesis, we study how distant supervision can be employed within a modern deep learning based NLP framework. As deep learning algorithms gets better when massive amount of data is provided (especially for representation learning), we revisit the task of generating distant supervision data from Wikipedia. We apply post-processing treatments on the original dump to further increase the quantity of labeled examples, while introducing a reasonable amount of noise. Then, we explore different methods for using distant supervision data for representation learning, mainly to learn classic and contextualized word representations. Due to its importance as a basic component in many NLP applications, we choose Named-Entity Recognition (NER) as our main task. We experiment on standard NER benchmarks showing state-of-the-art performances. By doing so, we investigate a more interesting setting, that is, improving the cross-domain (generalization) performances
    corecore