1,116 research outputs found

    Patrixa: A unification-based parser for Basque and its application to the automatic analysis of verbs

    Get PDF
    In this chapter we describe a computational grammar for Basque, and the first results obtained using it in the process of automatically acquiring subcategorization information about verbs and their associated sentence elements (arguments and adjuncts).In section 1 we describe the Basque syntax and the grammar we have developed for its treatment. The grammar is partial in the sense that it cannot recognize every sentence in real texts, but it is capable of describing the main syntactic elements, such as noun-phrases (NPs), prepositional phrases (PPs), and subordinate and simple sentences. This can be useful for several applications.In section 2 we explain the syntactic analyzer (or parser) used to automatically acquire information on verbal subcategorization from texts. The results will later be used by a linguist or processed by statistical filters.This work has been done by the IXA Natural Language Processing research group, centered on the application of automatic methods to the analysis of Basque

    Techniques for recognizing textual entailment and semantic equivalence

    Get PDF
    After defining what is understood by textual entailment and semantic equivalence, the present state and the desirable future of the systems aimed at recognizing them is shown. A compilation of the currently implemented techniques in the main Recognizing Textual Entailment and Semantic Equivalence systems is given

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure

    Corpora and evaluation tools for multilingual named entity grammar development

    Get PDF
    We present an effort for the development of multilingual named entity grammars in a unification-based finite-state formalism (SProUT). Following an extended version of the MUC7 standard, we have developed Named Entity Recognition grammars for German, Chinese, Japanese, French, Spanish, English, and Czech. The grammars recognize person names, organizations, geographical locations, currency, time and date expressions. Subgrammars and gazetteers are shared as much as possible for the grammars of the different languages. Multilingual corpora from the business domain are used for grammar development and evaluation. The annotation format (named entity and other linguistic information) is described. We present an evaluation tool which provides detailed statistics and diagnostics, allows for partial matching of annotations, and supports user-defined mappings between different annotation and grammar output formats

    Open-source resources and standards for Arabic word structure analysis: Fine grained morphological analysis of Arabic text corpora

    Get PDF
    Morphological analyzers are preprocessors for text analysis. Many Text Analytics applications need them to perform their tasks. The aim of this thesis is to develop standards, tools and resources that widen the scope of Arabic word structure analysis - particularly morphological analysis, to process Arabic text corpora of different domains, formats and genres, of both vowelized and non-vowelized text. We want to morphologically tag our Arabic Corpus, but evaluation of existing morphological analyzers has highlighted shortcomings and shown that more research is required. Tag-assignment is significantly more complex for Arabic than for many languages. The morphological analyzer should add the appropriate linguistic information to each part or morpheme of the word (proclitic, prefix, stem, suffix and enclitic); in effect, instead of a tag for a word, we need a subtag for each part. Very fine-grained distinctions may cause problems for automatic morphosyntactic analysis – particularly probabilistic taggers which require training data, if some words can change grammatical tag depending on function and context; on the other hand, finegrained distinctions may actually help to disambiguate other words in the local context. The SALMA – Tagger is a fine grained morphological analyzer which is mainly depends on linguistic information extracted from traditional Arabic grammar books and prior knowledge broad-coverage lexical resources; the SALMA – ABCLexicon. More fine-grained tag sets may be more appropriate for some tasks. The SALMA –Tag Set is a theory standard for encoding, which captures long-established traditional fine-grained morphological features of Arabic, in a notation format intended to be compact yet transparent. The SALMA – Tagger has been used to lemmatize the 176-million words Arabic Internet Corpus. It has been proposed as a language-engineering toolkit for Arabic lexicography and for phonetically annotating the Qur’an by syllable and primary stress information, as well as, fine-grained morphological tagging

    A standard tag set expounding traditional morphological features for Arabic language part-of-speech tagging

    Get PDF
    The SALMA Morphological Features Tag Set (SALMA, Sawalha Atwell Leeds Morphological Analysis tag set for Arabic) captures long-established traditional morphological features of grammar and Arabic, in a compact yet transparent notation. First, we introduce Part-of-Speech tagging and tag set standards for English and other European languages, and then survey Arabic Part-of-Speech taggers and corpora, and long-established Arabic traditions in analysis of morphology. A range of existing Arabic Part-of-Speech tag sets are illustrated and compared; and we review generic design criteria for corpus tag sets. For a morphologically-rich language like Arabic, the Part-of-Speech tag set should be defined in terms of morphological features characterizing word structure. We describe the SALMA Tag Set in detail, explaining and illustrating each feature and possible values. In our analysis, a tag consists of 22 characters; each position represents a feature and the letter at that location represents a value or attribute of the morphological feature; the dash ‘-’ represents a feature not relevant to a given word. The first character shows the main Parts of Speech, from: noun, verb, particle, punctuation, and Other (residual); these last two are an extension to the traditional three classes to handle modern texts. ‘Noun’ in Arabic subsumes what are traditionally referred to in English as ‘noun’ and ‘adjective’. The characters 2, 3, and 4 are used to represent subcategories; traditional Arabic grammar recognizes 34 subclasses of noun (letter 2), 3 subclasses of verb (letter 3), 21 subclasses of particle (letter 4). Others (residuals) and punctuation marks are represented in letters 5 and 6 respectively. The next letters represent traditional morphological features: gender (7), number (8), person (9), inflectional morphology (10) case or mood (11), case and mood marks (12), definiteness (13), voice (14), emphasized and non-emphasized (15), transitivity (16), rational (17), declension and conjugation (18). Finally there are four characters representing morphological information which is useful in Arabic text analysis, although not all linguists would count these as traditional features: unaugmented and augmented (19), number of root letters (20), verb root (21), types of nouns according to their final letters (22). The SALMA Tag Set is not tied to a specific tagging algorithm or theory, and other tag sets could be mapped onto this standard, to simplify and promote comparisons between and reuse of Arabic taggers and tagged corpora
    • …
    corecore