3 research outputs found

    Does color modalities affect handwriting recognition? An empirical study on Persian handwritings using convolutional neural networks

    Full text link
    Most of the methods on handwritten recognition in the literature are focused and evaluated on Black and White (BW) image databases. In this paper we try to answer a fundamental question in document recognition. Using Convolutional Neural Networks (CNNs), as eye simulator, we investigate to see whether color modalities of handwritten digits and words affect their recognition accuracy or speed? To the best of our knowledge, so far this question has not been answered due to the lack of handwritten databases that have all three color modalities of handwritings. To answer this question, we selected 13,330 isolated digits and 62,500 words from a novel Persian handwritten database, which have three different color modalities and are unique in term of size and variety. Our selected datasets are divided into training, validation, and testing sets. Afterwards, similar conventional CNN models are trained with the training samples. While the experimental results on the testing set show that CNN on the BW digit and word images has a higher performance compared to the other two color modalities, in general there are no significant differences for network accuracy in different color modalities. Also, comparisons of training times in three color modalities show that recognition of handwritten digits and words in BW images using CNN is much more efficient

    Combining RtL and LtR HMMs to recognise handwritten Farsi words of small‐ and medium‐sized vocabularies

    No full text
    In this study, a method for holistic recognition of handwritten Farsi words is proposed, which fuses the outputs of right‐to‐left (RtL) and left‐to‐right (LtR) hidden Markov models (HMMs). The experimental results on 16,000 images of 200 names of Iranian cities, from the ‘Iranshahr 3’ are presented and compared with those methods using only RtL or LtR models. Experimental results show that the main sources of error are similar beginnings or similar endings of the words. Since RtL and LtR models when dealing with the words behave differently, there is notable error diversity between the two classifiers in such a way that their combination increases the recognition rate. Compared to the RtL‐HMM, the product of output scores of the RtL and LtR‐HMMs reduces the classification error to about 6, 6 and 3%, for three different feature sets. A subjective error analysis on the results is also provided
    corecore