2,878 research outputs found

    Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale

    Get PDF
    Soil organic carbon (SOC) plays a major role in the global carbon budget. It can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Improving the tools that model the spatial distributions of SOC stocks at national scales is a priority, both for monitoring changes in SOC and as an input for global carbon cycles studies. In this paper, we compare and evaluate two recent and promising modelling approaches. First, we considered several increasingly complex boosted regression trees (BRT), a convenient and efficient multiple regression model from the statistical learning field. Further, we considered a robust geostatistical approach coupled to the BRT models. Testing the different approaches was performed on the dataset from the French Soil Monitoring Network, with a consistent cross-validation procedure. We showed that when a limited number of predictors were included in the BRT model, the standalone BRT predictions were significantly improved by robust geostatistical modelling of the residuals. However, when data for several SOC drivers were included, the standalone BRT model predictions were not significantly improved by geostatistical modelling. Therefore, in this latter situation, the BRT predictions might be considered adequate without the need for geostatistical modelling, provided that i) care is exercised in model fitting and validating, and ii) the dataset does not allow for modelling of local spatial autocorrelations, as is the case for many national systematic sampling schemes

    Novel MLR-RF-Based Geospatial Techniques: A Comparison with OK

    Get PDF
    Geostatistical estimation methods rely on experimental variograms that are mostly erratic, leading to subjective model fitting and assuming normal distribution during conditional simula-tions. In contrast, Machine Learning Algorithms (MLA) are (1) free of such limitations, (2) can in-corporate information from multiple sources and therefore emerge with increasing interest in real-time resource estimation and automation. However, MLAs need to be explored for robust learning of phenomena, better accuracy, and computational efficiency. This paper compares MLAs, i.e., Multiple Linear Regression (MLR) and Random Forest (RF), with Ordinary Kriging (OK). The techniques were applied to the publicly available Walkerlake dataset, while the exhaustive Walker Lake dataset was validated. The results of MLR were significant (p \u3c 10 × 10−5), with correlation coeffi-cients of 0.81 (R-square = 0.65) compared to 0.79 (R-square = 0.62) from the RF and OK methods. Additionally, MLR was automated (free from an intermediary step of variogram modelling as in OK), produced unbiased estimates, identified key samples representing different zones, and had higher computational efficiency

    Polynomial-Chaos-based Kriging

    Full text link
    Computer simulation has become the standard tool in many engineering fields for designing and optimizing systems, as well as for assessing their reliability. To cope with demanding analysis such as optimization and reliability, surrogate models (a.k.a meta-models) have been increasingly investigated in the last decade. Polynomial Chaos Expansions (PCE) and Kriging are two popular non-intrusive meta-modelling techniques. PCE surrogates the computational model with a series of orthonormal polynomials in the input variables where polynomials are chosen in coherency with the probability distributions of those input variables. On the other hand, Kriging assumes that the computer model behaves as a realization of a Gaussian random process whose parameters are estimated from the available computer runs, i.e. input vectors and response values. These two techniques have been developed more or less in parallel so far with little interaction between the researchers in the two fields. In this paper, PC-Kriging is derived as a new non-intrusive meta-modeling approach combining PCE and Kriging. A sparse set of orthonormal polynomials (PCE) approximates the global behavior of the computational model whereas Kriging manages the local variability of the model output. An adaptive algorithm similar to the least angle regression algorithm determines the optimal sparse set of polynomials. PC-Kriging is validated on various benchmark analytical functions which are easy to sample for reference results. From the numerical investigations it is concluded that PC-Kriging performs better than or at least as good as the two distinct meta-modeling techniques. A larger gain in accuracy is obtained when the experimental design has a limited size, which is an asset when dealing with demanding computational models

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Towards an operational model for estimating day and night instantaneous near-surface air temperature for urban heat island studies: outline and assessment

    Get PDF
    Near-surface air temperature (NSAT) is key for assessing urban heat islands, human health, and well-being. However, a widely recognized and cost- and time-effective replicable approach for estimating hourly NSAT is still urgent. In this study, we outline and validate an easy-to-replicate, yet effective, operational model, for automating the estimation of high-resolution day and night instantaneous NSAT. The model is tested on a heat wave event and for a large geographical area. The model combines remotely sensed land surface temperature and digital elevation model, with air temperature from local fixed weather station networks. Achieved NSAT has daily and hourly frequency consistent with MODIS revisiting time. A geographically weighted regression method is employed, with exponential weighting found to be highly accurate for our purpose. A robust assessment of different methods, at different time slots, both day- and night-time, and during a heatwave event, is provided based on a cross-validation protocol. Four-time periods are modelled and tested, for two consecutive days, i.e. 31st of July 2020 at 10:40 and 21:50, and 1st of August 2020 at 02:00 and 13:10 local time. High R2 was found for all time slots, ranging from 0.82 to 0.88, with a bias close to 0, RMSE ranging from 1.45 °C to 1.77 °C, and MAE from 1.15 °C to 1.36 °C. Normalized RMSE and MAE are roughly 0.05 to 0.08. Overall, if compared to other recognized regression models, higher effectiveness is allowed also in terms of spatial autocorrelation of residuals, as well as in terms of model sensitivity
    corecore