741 research outputs found

    Combining pilot-symbol-aided techniques for fading estimation and diversity reception in multipath fading channels

    Get PDF
    A novel pilot-symbol-aided (PSA) fading estimation technique that combines the estimates from a conventional PSA technique and a bandwidth-efficient PSA technique to achieve better performances is proposed for digital signals in multipath fading channels. The conventional technique has better performances at low signal-to-noise ratios (SNRs), while the bandwidth-efficient technique is superior at high SNRs. Monte Carlo computer simulation has been used to assess the effects of the proposed combining technique on the bit-error-rate (BER) performances of 16-ary quadrature-amplitude-modulation (16QAM), with and without two-branch diversity reception, in a flat Rayleigh fading channel. Results have shown that the combining technique has the advantages of both of the conventional technique and the bandwidth-efficient technique and is more preferred for use with diversity reception. Β© 2006 Springer Science + Business Media, Inc.postprin

    Combining PSA fading estimation techniques for TCM and diversity reception in Rician fading channels

    Get PDF
    In this paper, a novel pilot-symbol-aided (PSA) technique is proposed for fading estimation in the land mobile satellite fading channels. The proposed technique combines the fading estimates obtained from a bandwidth-efficient technique and a conventional technique according to the signal-to-noise ratios (SNRs) of the fading estimates. To enhance the transmission quality, trellis-coded modulation (TCM) and diversity reception are employed in the system, and the combined estimates are subsequently used to correct the channel fading effects, to weight the signals from different diversity branches, and to provide channel state information of the Viterbi decoder. Monte Carlo computer simulation has been used to study the bit-error-rate (BER) performance of the proposed technique on trellis-coded 16-ary quadrature amplitude modulation in the frequency non-selective Rician fading channels. Results have shown that the proposed PSA technique requires a very low bandwidth redundancy to provide satisfactory BER performance at low SNRs, and thus is suitable for use with TCM and diversity reception to achieve both bandwidth and power-efficient transmission.postprin

    Performances of 16QAM with fading compensation and postdetection diversity reception in satellite mobile channels

    Get PDF
    This paper studies the effects of N-branch postdetection selection diversity reception, where N = 1, 2, 3 or 4, incorporated with fading compensation on a digital satellite mobile system. The digital satellite mobile system transmits a pilot-symbol-aided 16-ary quadrature-amplitude modulated (PSA-16QAM) signal over the Rician channels. A selection method that makes use of the pilot symbols to select one of the N branches in the diversity reception system for signal detection, and a novel PSA technique that makes use of both the pilot symbols and data symbols for fading compensation, are proposed. Computer simulation tests are used to assess the effects of the proposed techniques on bit-error rate performances (BER) of the PSA-16QAM system in the presence of additive white Gaussian noise (AWGN) or co-channel interference (CCI) in the Rician faded channels. When frequency diversity is used, PSA-16QAM with 2-branch and 4-branch diversity reception occupies about the same bandwidths as quaternary phase-shift-keying (QPSK) without using diversity and with 2-branch diversity, respectively, yet achieving the same capacity. Thus, simulation tests on the BER performances of a QPSK system without diversity and with 2-branch diversity are also carried out and the results are used to determine the preferred system arrangements. Β©1997 John Wiley & Sons, Ltd.postprin

    Performance of a Faded-Compensated 16QAM with Diversity Reception in Mobile radio Channels

    Get PDF
    The paper studies the bit-error-rate (BER) performance of a fade-compensated 16 QAM with two-branch postdetection selection combining diversity reception in the Rayleigh fading channels. A pilot symbol-aided (PSA) technique that uses both pilot symbols and data symbols is employed for fading compensation. Computer simulation results have shown that, the use of diversity reception technique can significantly improve the BER performance when the normalized delay between the signals at the two receivers is small. It is also shown that, the error-floor is sensitive to the normalized delay, but relatively less sensitive to the power ratio between the signals at the two receivers.published_or_final_versio

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore