8,822 research outputs found

    DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation

    Full text link
    In recent years, there has been growing focus on the study of automated recommender systems. Music recommendation systems serve as a prominent domain for such works, both from an academic and a commercial perspective. A fundamental aspect of music perception is that music is experienced in temporal context and in sequence. In this work we present DJ-MC, a novel reinforcement-learning framework for music recommendation that does not recommend songs individually but rather song sequences, or playlists, based on a model of preferences for both songs and song transitions. The model is learned online and is uniquely adapted for each listener. To reduce exploration time, DJ-MC exploits user feedback to initialize a model, which it subsequently updates by reinforcement. We evaluate our framework with human participants using both real song and playlist data. Our results indicate that DJ-MC's ability to recommend sequences of songs provides a significant improvement over more straightforward approaches, which do not take transitions into account.Comment: -Updated to the most recent and completed version (to be presented at AAMAS 2015) -Updated author list. in Autonomous Agents and Multiagent Systems (AAMAS) 2015, Istanbul, Turkey, May 201

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    A retrieval-based dialogue system utilizing utterance and context embeddings

    Get PDF
    Finding semantically rich and computer-understandable representations for textual dialogues, utterances and words is crucial for dialogue systems (or conversational agents), as their performance mostly depends on understanding the context of conversations. Recent research aims at finding distributed vector representations (embeddings) for words, such that semantically similar words are relatively close within the vector-space. Encoding the "meaning" of text into vectors is a current trend, and text can range from words, phrases and documents to actual human-to-human conversations. In recent research approaches, responses have been generated utilizing a decoder architecture, given the vector representation of the current conversation. In this paper, the utilization of embeddings for answer retrieval is explored by using Locality-Sensitive Hashing Forest (LSH Forest), an Approximate Nearest Neighbor (ANN) model, to find similar conversations in a corpus and rank possible candidates. Experimental results on the well-known Ubuntu Corpus (in English) and a customer service chat dataset (in Dutch) show that, in combination with a candidate selection method, retrieval-based approaches outperform generative ones and reveal promising future research directions towards the usability of such a system.Comment: A shorter version is accepted at ICMLA2017 conference; acknowledgement added; typos correcte

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Meta-level learning for the effective reduction of model search space.

    Get PDF
    The exponential growth of volume, variety and velocity of the data is raising the need for investigation of intelligent ways to extract useful patterns from the data. It requires deep expert knowledge and extensive computational resources to find the mapping of learning methods that leads to the optimized performance on a given task. Moreover, numerous configurations of these learning algorithms add another level of complexity. Thus, it triggers the need for an intelligent recommendation engine that can advise the best learning algorithm and its configurations for a given task. The techniques that are commonly used by experts are; trial-and-error, use their prior experience on the specific domain, etc. These techniques sometimes work for less complex tasks that require thousands of parameters to learn. However, the state-of-the-art models, e.g. deep learning models, require well-tuned hyper-parameters to learn millions of parameters which demand specialized skills and numerous computationally expensive and time-consuming trials. In that scenario, Meta-level learning can be a potential solution that can recommend the most appropriate options efficiently and effectively regardless of the complexity of data. On the contrary, Meta-learning leads to several challenges; the most critical ones being model selection and hyper-parameter optimization. The goal of this research is to investigate model selection and hyper-parameter optimization approaches of automatic machine learning in general and the challenges associated with them. In machine learning pipeline there are several phases where Meta-learning can be used to effectively facilitate the best recommendations including 1) pre-processing steps, 2) learning algorithm or their combination, 3) adaptivity mechanism parameters, 4) recurring concept extraction, and 5) concept drift detection. The scope of this research is limited to feature engineering for problem representation, and learning strategy for algorithm and its hyper-parameters recommendation at Meta-level. There are three studies conducted around the two different approaches of automatic machine learning which are model selection using Meta-learning and hyper-parameter optimization. The first study evaluates the situation in which the use of additional data from a different domain can improve the performance of a meta-learning system for time-series forecasting, with focus on cross- domain Meta-knowledge transfer. Although the experiments revealed limited room for improvement over the overall best base-learner, the meta-learning approach turned out to be a safe choice, minimizing the risk of selecting the least appropriate base-learner. There are only 2% of cases recommended by meta- learning that are the worst performing base-learning methods. The second study proposes another efficient and accurate domain adaption approach but using a different meta-learning approach. This study empirically confirms the intuition that there exists a relationship between the similarity of the two different tasks and the depth of network needed to fine-tune in order to achieve accuracy com- parable with that of a model trained from scratch. However, the approach is limited to a single hyper-parameter which is fine-tuning of the network depth based on task similarity. The final study of this research has expanded the set of hyper-parameters while implicitly considering task similarity at the intrinsic dynamics of the training process. The study presents a framework to automatically find a good set of hyper-parameters resulting in reasonably good accuracy, by framing the hyper-parameter selection and tuning within the reinforcement learning regime. The effectiveness of a recommended tuple can be tested very quickly rather than waiting for the network to converge. This approach produces accuracy close to the state-of-the-art approach and is found to be comparatively 20% less computationally expensive than previous approaches. The proposed methods in these studies, belonging to different areas of automatic machine learning, have been thoroughly evaluated on a number of benchmark datasets which confirmed the great potential of these methods
    • …
    corecore