74 research outputs found

    Knowledge Base Population using Semantic Label Propagation

    Get PDF
    A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge Bases for Natural Language Processin

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%

    Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction

    Get PDF
    Versió amb dues seccions retallades, per drets de l'editorOne of the challenges in Natural Language Processing (NLP) is the unstructured nature of texts, in which useful information is not easily identifiable. Information Extraction (IE) aims to alleviate it by enabling automatic extraction of structured information from such text sources. The resulting structured information will facilitate easier querying, organizing, and analyzing of data from texts. In this thesis, we are interested in two IE related tasks: (i) named entity classification and (ii) template filling. Specifically, this thesis examines the problem of learning classifiers of text spans and explore its application for extracting named entities and template slot-fillers. In general, our goal is to construct a method to learn classifiers that: (i) require less supervision, (ii) work well with high-dimensional sparse feature spaces and (iii) are able to classify unseen items (i.e. named entities/slot-fillers not observed in training data). The key idea of our contribution is the utilization of unseen conjunctive features. A conjunctive feature is a combination of features from different feature sets. For example, to classify a phrase, one might have one feature set for the context and another set for the phrase itself. When learning a classifier, only a factor of these conjunctive features will be observed in the training set, leaving the rest (i.e. unseen features) unusable for predicting items in test time. We hypothesize that utilizing such unseen conjunctions is useful to address all of the aspects of the goal. We develop a general regularization framework specifically designed for sparse conjunctive feature spaces. Our strategy is based on employing tensors to represent the conjunctive feature space, and forcing the model to induce low-dimensional embeddings of the feature vectors via low-rank regularization on the tensor parameters. Such compressed representation will help prediction by generalizing to novel examples where most of the conjunctions will be unseen in the training set. We conduct experiments on learning named entity classifiers and template filling, focusing on extracting unseen items. We show that when learning classifiers under minimal supervision, our approach is more effective in controlling model capacity than standard techniques for linear classification.Uno de los retos en Procesamiento del Lenguaje Natural (NLP, del inglés Natural Language Processing) es la naturaleza no estructurada del texto, que hace que la información útil y relevante no sea fácilmente identificable. Los métodos de Extracción de Información (IE, del inglés Information Extraction) afrontan este problema mediante la extracción automática de información estructurada de dichos textos. La estructura resultante facilita la búsqueda, la organización y el análisis datos textuales. Esta tesis se centra en dos tareas relacionadas dentro de IE: (i) clasificación de entidades nombradas (NEC, del inglés Named Entity Classification), y (ii) rellenado de plantillas (en inglés, template filling). Concretamente, esta tesis estudia el problema de aprender clasificadores de secuencias textuales y explora su aplicación a la extracción de entidades nombradas y de valores para campos de plantillas. El objetivo general es desarrollar un método para aprender clasificadores que: (i) requieran poca supervisión; (ii) funcionen bien en espacios de características de alta dimensión y dispersión; y (iii) sean capaces de clasificar elementos nunca vistos (por ejemplo entidades o valores de campos que no hayan sido vistos en fase de entrenamiento). La idea principal de nuestra contribución es la utilización de características conjuntivas que no aparecen en el conjunto de entrenamiento. Una característica conjuntiva es una conjunción de características elementales. Por ejemplo, para clasificar la mención de una entidad en una oración, se utilizan características de la mención, del contexto de ésta, y a su vez conjunciones de los dos grupos de características. Cuando se aprende un clasificador en un conjunto de entrenamiento concreto, sólo se observará una fracción de estas características conjuntivas, dejando el resto (es decir, características no vistas) sin ser utilizado para predecir elementos en fase de evaluación y explotación del modelo. Nuestra hipótesis es que la utilización de estas conjunciones nunca vistas pueden ser potencialmente muy útiles, especialmente para reconocer entidades nuevas. Desarrollamos un marco de regularización general específicamente diseñado para espacios de características conjuntivas dispersas. Nuestra estrategia se basa en utilizar tensores para representar el espacio de características conjuntivas y obligar al modelo a inducir "embeddings" de baja dimensión de los vectores de características vía regularización de bajo rango en los parámetros de tensor. Dicha representación comprimida ayudará a la predicción, generalizando a nuevos ejemplos donde la mayoría de las conjunciones no han sido vistas durante la fase de entrenamiento. Presentamos experimentos sobre el aprendizaje de clasificadores de entidades nombradas, y clasificadores de valores en campos de plantillas, centrándonos en la extracción de elementos no vistos. Demostramos que al aprender los clasificadores bajo mínima supervisión, nuestro enfoque es más efectivo en el control de la capacidad del modelo que las técnicas estándar para la clasificación linealPostprint (published version

    Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction

    Get PDF
    One of the challenges in Natural Language Processing (NLP) is the unstructured nature of texts, in which useful information is not easily identifiable. Information Extraction (IE) aims to alleviate it by enabling automatic extraction of structured information from such text sources. The resulting structured information will facilitate easier querying, organizing, and analyzing of data from texts. In this thesis, we are interested in two IE related tasks: (i) named entity classification and (ii) template filling. Specifically, this thesis examines the problem of learning classifiers of text spans and explore its application for extracting named entities and template slot-fillers. In general, our goal is to construct a method to learn classifiers that: (i) require less supervision, (ii) work well with high-dimensional sparse feature spaces and (iii) are able to classify unseen items (i.e. named entities/slot-fillers not observed in training data). The key idea of our contribution is the utilization of unseen conjunctive features. A conjunctive feature is a combination of features from different feature sets. For example, to classify a phrase, one might have one feature set for the context and another set for the phrase itself. When learning a classifier, only a factor of these conjunctive features will be observed in the training set, leaving the rest (i.e. unseen features) unusable for predicting items in test time. We hypothesize that utilizing such unseen conjunctions is useful to address all of the aspects of the goal. We develop a general regularization framework specifically designed for sparse conjunctive feature spaces. Our strategy is based on employing tensors to represent the conjunctive feature space, and forcing the model to induce low-dimensional embeddings of the feature vectors via low-rank regularization on the tensor parameters. Such compressed representation will help prediction by generalizing to novel examples where most of the conjunctions will be unseen in the training set. We conduct experiments on learning named entity classifiers and template filling, focusing on extracting unseen items. We show that when learning classifiers under minimal supervision, our approach is more effective in controlling model capacity than standard techniques for linear classification.Uno de los retos en Procesamiento del Lenguaje Natural (NLP, del inglés Natural Language Processing) es la naturaleza no estructurada del texto, que hace que la información útil y relevante no sea fácilmente identificable. Los métodos de Extracción de Información (IE, del inglés Information Extraction) afrontan este problema mediante la extracción automática de información estructurada de dichos textos. La estructura resultante facilita la búsqueda, la organización y el análisis datos textuales. Esta tesis se centra en dos tareas relacionadas dentro de IE: (i) clasificación de entidades nombradas (NEC, del inglés Named Entity Classification), y (ii) rellenado de plantillas (en inglés, template filling). Concretamente, esta tesis estudia el problema de aprender clasificadores de secuencias textuales y explora su aplicación a la extracción de entidades nombradas y de valores para campos de plantillas. El objetivo general es desarrollar un método para aprender clasificadores que: (i) requieran poca supervisión; (ii) funcionen bien en espacios de características de alta dimensión y dispersión; y (iii) sean capaces de clasificar elementos nunca vistos (por ejemplo entidades o valores de campos que no hayan sido vistos en fase de entrenamiento). La idea principal de nuestra contribución es la utilización de características conjuntivas que no aparecen en el conjunto de entrenamiento. Una característica conjuntiva es una conjunción de características elementales. Por ejemplo, para clasificar la mención de una entidad en una oración, se utilizan características de la mención, del contexto de ésta, y a su vez conjunciones de los dos grupos de características. Cuando se aprende un clasificador en un conjunto de entrenamiento concreto, sólo se observará una fracción de estas características conjuntivas, dejando el resto (es decir, características no vistas) sin ser utilizado para predecir elementos en fase de evaluación y explotación del modelo. Nuestra hipótesis es que la utilización de estas conjunciones nunca vistas pueden ser potencialmente muy útiles, especialmente para reconocer entidades nuevas. Desarrollamos un marco de regularización general específicamente diseñado para espacios de características conjuntivas dispersas. Nuestra estrategia se basa en utilizar tensores para representar el espacio de características conjuntivas y obligar al modelo a inducir "embeddings" de baja dimensión de los vectores de características vía regularización de bajo rango en los parámetros de tensor. Dicha representación comprimida ayudará a la predicción, generalizando a nuevos ejemplos donde la mayoría de las conjunciones no han sido vistas durante la fase de entrenamiento. Presentamos experimentos sobre el aprendizaje de clasificadores de entidades nombradas, y clasificadores de valores en campos de plantillas, centrándonos en la extracción de elementos no vistos. Demostramos que al aprender los clasificadores bajo mínima supervisión, nuestro enfoque es más efectivo en el control de la capacidad del modelo que las técnicas estándar para la clasificación linea

    Slot Filling

    Get PDF
    Slot filling (SF) is the task of automatically extracting facts about particular entities from unstructured text, and populating a knowledge base (KB) with these facts. These structured KBs enable applications such as structured web queries and question answering. SF is typically framed as a query-oriented setting of the related task of relation extraction. Throughout this thesis, we reflect on how SF is a task with many distinct problems. We demonstrate that recall is a major limiter on SF system performance. We contribute an analysis of typical SF recall loss, and find a substantial amount of loss occurs early in the SF pipeline. We confirm that accurate NER and coreference resolution are required for high-recall SF. We measure upper bounds using a naïve graph-based semi-supervised bootstrapping technique, and find that only 39% of results are reachable using a typical feature space. We expect that this graph-based technique will be directly useful for extraction, and this leads us to frame SF as a label propagation task. We focus on a detailed graph representation of the task which reflects the behaviour and assumptions we want to model based on our analysis, including modifying the label propagation process to model multiple types of label interaction. Analysing the graph, we find that a large number of errors occur in very close proximity to training data, and identify that this is of major concern for propagation. While there are some conflicts caused by a lack of sufficient disambiguating context—we explore adding additional contextual features to address this—many of these conflicts are caused by subtle annotation problems. We find that lack of a standard for how explicit expressions of relations must be in text makes consistent annotation difficult. Using a strict definition of explicitness results in 20% of correct annotations being removed from a standard dataset. We contribute several annotation-driven analyses of this problem, exploring the definition of slots and the effect of the lack of a concrete definition of explicitness: annotation schema do not detail how explicit expressions of relations need to be, and there is large scope for disagreement between annotators. Additionally, applications may require relatively strict or relaxed evidence for extractions, but this is not considered in annotation tasks. We demonstrate that annotators frequently disagree on instances, dependent on differences in annotator world knowledge and thresholds on making probabilistic inference. SF is fundamental to enabling many knowledge-based applications, and this work motivates modelling and evaluating SF to better target these tasks
    corecore