23,835 research outputs found

    Physical simulation for monocular 3D model based tracking

    Get PDF
    The problem of model-based object tracking in three dimensions is addressed. Most previous work on tracking assumes simple motion models, and consequently tracking typically fails in a variety of situations. Our insight is that incorporating physics models of object behaviour improves tracking performance in these cases. In particular it allows us to handle tracking in the face of rigid body interactions where there is also occlusion and fast object motion. We show how to incorporate rigid body physics simulation into a particle filter. We present two methods for this based on pose and force noise. The improvements are tested on four videos of a robot pushing an object, and results indicate that our approach performs considerably better than a plain particle filter tracker, with the force noise method producing the best results over the range of test videos

    DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments

    Full text link
    Simultaneous Localization and Mapping (SLAM) is considered to be a fundamental capability for intelligent mobile robots. Over the past decades, many impressed SLAM systems have been developed and achieved good performance under certain circumstances. However, some problems are still not well solved, for example, how to tackle the moving objects in the dynamic environments, how to make the robots truly understand the surroundings and accomplish advanced tasks. In this paper, a robust semantic visual SLAM towards dynamic environments named DS-SLAM is proposed. Five threads run in parallel in DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and dense semantic map creation. DS-SLAM combines semantic segmentation network with moving consistency check method to reduce the impact of dynamic objects, and thus the localization accuracy is highly improved in dynamic environments. Meanwhile, a dense semantic octo-tree map is produced, which could be employed for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in the real-world environment. The results demonstrate the absolute trajectory accuracy in DS-SLAM can be improved by one order of magnitude compared with ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic environments. Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLA

    Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

    Full text link
    With the rise of end-to-end learning through deep learning, person detectors and re-identification (ReID) models have recently become very strong. Multi-camera multi-target (MCMT) tracking has not fully gone through this transformation yet. We intend to take another step in this direction by presenting a theoretically principled way of integrating ReID with tracking formulated as an optimal Bayes filter. This conveniently side-steps the need for data-association and opens up a direct path from full images to the core of the tracker. While the results are still sub-par, we believe that this new, tight integration opens many interesting research opportunities and leads the way towards full end-to-end tracking from raw pixels.Comment: First two authors have equal contribution. This is initial work into a new direction, not a benchmark-beating method. v2 only adds acknowledgements and fixes a typo in e-mai

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    • …
    corecore