374 research outputs found

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Multi-Sensory Interaction for Blind and Visually Impaired People

    Get PDF
    This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye

    Proceedings of the 10th international conference on disability, virtual reality and associated technologies (ICDVRAT 2014)

    Get PDF
    The proceedings of the conferenc

    Multimodal Content Delivery for Geo-services

    Get PDF
    This thesis describes a body of work carried out over several research projects in the area of multimodal interaction for location-based services. Research in this area has progressed from using simulated mobile environments to demonstrate the visual modality, to the ubiquitous delivery of rich media using multimodal interfaces (geo- services). To effectively deliver these services, research focused on innovative solutions to real-world problems in a number of disciplines including geo-location, mobile spatial interaction, location-based services, rich media interfaces and auditory user interfaces. My original contributions to knowledge are made in the areas of multimodal interaction underpinned by advances in geo-location technology and supported by the proliferation of mobile device technology into modern life. Accurate positioning is a known problem for location-based services, contributions in the area of mobile positioning demonstrate a hybrid positioning technology for mobile devices that uses terrestrial beacons to trilaterate position. Information overload is an active concern for location-based applications that struggle to manage large amounts of data, contributions in the area of egocentric visibility that filter data based on field-of-view demonstrate novel forms of multimodal input. One of the more pertinent characteristics of these applications is the delivery or output modality employed (auditory, visual or tactile). Further contributions in the area of multimodal content delivery are made, where multiple modalities are used to deliver information using graphical user interfaces, tactile interfaces and more notably auditory user interfaces. It is demonstrated how a combination of these interfaces can be used to synergistically deliver context sensitive rich media to users - in a responsive way - based on usage scenarios that consider the affordance of the device, the geographical position and bearing of the device and also the location of the device

    State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication and Visible Light Communication in the Development of Smart Cities

    Get PDF
    The current social impact of new technologies has produced major changes in all areas of society, creating the concept of a smart city supported by an electronic infrastructure, telecommunications and information technology. This paper presents a review of Bluetooth Low Energy (BLE), Near Field Communication (NFC) and Visible Light Communication (VLC) and their use and influence within different areas of the development of the smart city. The document also presents a review of Big Data Solutions for the management of information and the extraction of knowledge in an environment where things are connected by an “Internet of Things” (IoT) network. Lastly, we present how these technologies can be combined together to benefit the development of the smart city

    Iterative Design and Prototyping of Computer Vision Mediated Remote Sighted Assistance

    Get PDF
    Remote sighted assistance (RSA) is an emerging navigational aid for people with visual impairments (PVI). Using scenario-based design to illustrate our ideas, we developed a prototype showcasing potential applications for computer vision to support RSA interactions. We reviewed the prototype demonstrating real-world navigation scenarios with an RSA expert, and then iteratively refined the prototype based on feedback. We reviewed the refined prototype with 12 RSA professionals to evaluate the desirability and feasibility of the prototyped computer vision concepts. The RSA expert and professionals were engaged by, and reacted insightfully and constructively to the proposed design ideas. We discuss what we learned about key resources, goals, and challenges of the RSA prosthetic practice through our iterative prototype review, as well as implications for the design of RSA systems and the integration of computer vision technologies into RSA

    Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception

    Get PDF
    During the last decade, the functionalities of electronic devices within a living environment constantly increased. Besides the personal computer, now tablet PCs, smart household appliances, and smartwatches enriched the technology landscape. The trend towards an ever-growing number of computing systems has resulted in many highly heterogeneous human-machine interfaces. Users are forced to adapt to technology instead of having the technology adapt to them. Gathering context information about the user is a key factor for improving the interaction experience. Emerging wearable devices show the benefits of sophisticated sensors which make interaction more efficient, natural, and enjoyable. However, many technologies still lack of these desirable properties, motivating me to work towards new ways of sensing a user's actions and thus enriching the context. In my dissertation I follow a human-centric approach which ranges from sensing hand movements to recognizing whole-body interactions with objects. This goal can be approached with a vast variety of novel and existing sensing approaches. I focused on perceiving the environment with quasi-electrostatic fields by making use of capacitive coupling between devices and objects. Following this approach, it is possible to implement interfaces that are able to recognize gestures, body movements and manipulations of the environment at typical distances up to 50cm. These sensors usually have a limited resolution and can be sensitive to other conductive objects or electrical devices that affect electric fields. The technique allows for designing very energy-efficient and high-speed sensors that can be deployed unobtrusively underneath any kind of non-conductive surface. Compared to other sensing techniques, exploiting capacitive coupling also has a low impact on a user's perceived privacy. In this work, I also aim at enhancing the interaction experience with new perceptional capabilities based on capacitive coupling. I follow a bottom-up methodology and begin by presenting two low-level approaches for environmental perception. In order to perceive a user in detail, I present a rapid prototyping toolkit for capacitive proximity sensing. The prototyping toolkit shows significant advancements in terms of temporal and spatial resolution. Due to some limitations, namely the inability to determine the identity and fine-grained manipulations of objects, I contribute a generic method for communications based on capacitive coupling. The method allows for designing highly interactive systems that can exchange information through air and the human body. I furthermore show how human body parts can be recognized from capacitive proximity sensors. The method is able to extract multiple object parameters and track body parts in real-time. I conclude my thesis with contributions in the domain of context-aware devices and explicit gesture-recognition systems

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog
    • 

    corecore