5,869 research outputs found

    fMRI Analysis of Three Concurrent Processing Pathways

    Get PDF

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Functional Magnetic Resonance Imaging

    Get PDF
    "Functional Magnetic Resonance Imaging - Advanced Neuroimaging Applications" is a concise book on applied methods of fMRI used in assessment of cognitive functions in brain and neuropsychological evaluation using motor-sensory activities, language, orthographic disabilities in children. The book will serve the purpose of applied neuropsychological evaluation methods in neuropsychological research projects, as well as relatively experienced psychologists and neuroscientists. Chapters are arranged in the order of basic concepts of fMRI and physiological basis of fMRI after event-related stimulus in first two chapters followed by new concepts of fMRI applied in constraint-induced movement therapy; reliability analysis; refractory SMA epilepsy; consciousness states; rule-guided behavioral analysis; orthographic frequency neighbor analysis for phonological activation; and quantitative multimodal spectroscopic fMRI to evaluate different neuropsychological states

    Modulating consciousness with acoustic-electric stimulation

    Get PDF

    Wiki-health: from quantified self to self-understanding

    Get PDF
    Today, healthcare providers are experiencing explosive growth in data, and medical imaging represents a significant portion of that data. Meanwhile, the pervasive use of mobile phones and the rising adoption of sensing devices, enabling people to collect data independently at any time or place is leading to a torrent of sensor data. The scale and richness of the sensor data currently being collected and analysed is rapidly growing. The key challenges that we will be facing are how to effectively manage and make use of this abundance of easily-generated and diverse health data. This thesis investigates the challenges posed by the explosive growth of available healthcare data and proposes a number of potential solutions to the problem. As a result, a big data service platform, named Wiki-Health, is presented to provide a unified solution for collecting, storing, tagging, retrieving, searching and analysing personal health sensor data. Additionally, it allows users to reuse and remix data, along with analysis results and analysis models, to make health-related knowledge discovery more available to individual users on a massive scale. To tackle the challenge of efficiently managing the high volume and diversity of big data, Wiki-Health introduces a hybrid data storage approach capable of storing structured, semi-structured and unstructured sensor data and sensor metadata separately. A multi-tier cloud storage system—CACSS has been developed and serves as a component for the Wiki-Health platform, allowing it to manage the storage of unstructured data and semi-structured data, such as medical imaging files. CACSS has enabled comprehensive features such as global data de-duplication, performance-awareness and data caching services. The design of such a hybrid approach allows Wiki-Health to potentially handle heterogeneous formats of sensor data. To evaluate the proposed approach, we have developed an ECG-based health monitoring service and a virtual sensing service on top of the Wiki-Health platform. The two services demonstrate the feasibility and potential of using the Wiki-Health framework to enable better utilisation and comprehension of the vast amounts of sensor data available from different sources, and both show significant potential for real-world applications.Open Acces

    Transcranial Magnetic Stimulation and Neuroimaging Coregistration

    Get PDF
    The development of neuroimaging techniques is one of the most impressive advancements in neuroscience. The main reason for the widespread use of these instruments lies in their capacity to provide an accurate description of neural activity during a cognitive process or during rest. This important advancement is related to the possibility to selectively detect changes of neuronal activity in space and time by means of different biological markers. Specifically, functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and nearinfrared spectroscopy (NIRS) use metabolic markers of ongoing neuronal activity to provide an accurate description of the activation of specific brain areas with high spatial resolution. Similarly, electroencephalography (EEG) is able to detect electric markers of neuronal activity, providing an accurate description of brain activation with high temporal resolution. The application of these techniques during a cognitive task allows important inferences regarding the relation between the detected neural activity, the cognitive process involved in an ongoing task, and behaviour: this is known as a \u201ccorrelational approach\u201d

    Using Smartphone Sensor Paradata and Personalized Machine Learning Models to Infer Participants' Well-being: Ecological Momentary Assessment

    Get PDF
    Background: Sensors embedded in smartphones allow for the passive momentary quantification of people’s states in the context of their daily lives in real time. Such data could be useful for alleviating the burden of ecological momentary assessments and increasing utility in clinical assessments. Despite existing research on using passive sensor data to assess participants’ moment-to-moment states and activity levels, only limited research has investigated temporally linking sensor assessment and self-reported assessment to further integrate the 2 methodologies. Objective: We investigated whether sparse movement-related sensor data can be used to train machine learning models that are able to infer states of individuals’ work-related rumination, fatigue, mood, arousal, life engagement, and sleep quality. Sensor data were only collected while the participants filled out the questionnaires on their smartphones. Methods: We trained personalized machine learning models on data from employees (N=158) who participated in a 3-week ecological momentary assessment study. Results: The results suggested that passive smartphone sensor data paired with personalized machine learning models can be used to infer individuals’ self-reported states at later measurement occasions. The mean R 2 was approximately 0.31 (SD 0.29), and more than half of the participants (119/158, 75.3%) had an R 2 of ≥0.18. Accuracy was only slightly attenuated compared with earlier studies and ranged from 38.41% to 51.38%. Conclusions: Personalized machine learning models and temporally linked passive sensing data have the capability to infer a sizable proportion of variance in individuals’ daily self-reported states. Further research is needed to investigate factors that affect the accuracy and reliability of the inference

    Leveraging Multimodal Learning Analytics to Understand How Humans Learn with Emerging Technologies

    Get PDF
    Major education and training challenges are plaguing the United States in preparing the next generation of the future workforce to meet the demands of the 21st Century. Several calls have been released to improve education programs to ensure learners are acquiring 21st century knowledge, skills, and abilities (KSAs). As we embark on the digital and automation ages of the 21st century, it is essential that we move away from traditional education programs that define and measure KSAs as static constructs (e.g., standardized assessments) with little consideration of the actual real-time deployment of these processes, missing critical information on the degree to which learners are acquiring and applying 21st century KSAs. The objective of this dissertation is to use 1 book chapter and 2 journal articles to illustrate the value in leveraging emerging technologies and multimodal trace data to define and measure scientific thinking, reflection, and self-regulated learning--core 21st century skills, across contexts, domains, tasks, and populations (e.g., medical versus undergraduates versus middle-school students). Chapters 2-4 of this dissertation provide evidence of ways to leverage multimodal trace data guided by theoretical perspectives in cognitive and learning sciences, with a special focus in self-regulated learning, to assess the extent to which learners engaged in scientific thinking, reflection, and self-regulated learning during learning activities with emerging technologies. Overall, results from these chapters illustrate that it is necessary to utilize methods that capture learning processes as they unfold during learning activities that are guided by theoretical perspectives in self-regulated learning. Findings from this research hold significant broader impacts for addressing the education and training challenges in the United States by collecting multimodal trace data over the course of learning to not only detect and identify how learners are developing KSAs such as scientific thinking, reflection, and self-regulated learning, but where these data could be fed into an intelligent and adaptive system to repurpose it back to trainers, teachers, instructors, and learners for just-in-time interventions and individualized feedback. The intellectual merit of this dissertation focuses predominantly on the importance of utilizing rich streams of multimodal trace data that are mapped onto different theoretical perspectives on how humans self-regulate across tasks like clinical reasoning, scientific thinking, and reflection with emerging technologies such as a game-based learning environment called Crystal Island. Discussion is incorporated around ways to leverage multimodal trace data on undergraduate, middle-school, and medical student populations across a range of tasks including learning about microbiology to problem solving with a game-based learning environment called Crystal Island and clinically reasoning about diagnoses across emerging technologies

    Doctor of Philosophy

    Get PDF
    dissertationThe primate auditory system is responsible for analyzing complex patterns of pressure differences and then synthesizing this information into a behaviorally relevant representation of the external world. How the auditory cortex accomplishes this complex task is unknown. This thesis examines the neural mechanisms underlying auditory perception in the primate auditory cortex, focusing on the neural representation of communication sounds. This thesis is composed of three studies of auditory cortical processing in the macaque and human. The first examines coding in primary and tertiary auditory cortex as it relates to the possibility for developing a stimulating auditory neural prosthesis. The second study applies an information theoretic approach to understanding information transfer between primary and tertiary auditory cortex. The final study examines visual influences on human tertiary auditory cortical processing during illusory audiovisual speech perception. Together, these studies provide insight into the cortical physiology underlying sound perception and insight into the creation of a stimulating cortical neural prosthesis for the deaf
    • …
    corecore