120,364 research outputs found

    Combining Models of Approximation with Partial Learning

    Full text link
    In Gold's framework of inductive inference, the model of partial learning requires the learner to output exactly one correct index for the target object and only the target object infinitely often. Since infinitely many of the learner's hypotheses may be incorrect, it is not obvious whether a partial learner can be modifed to "approximate" the target object. Fulk and Jain (Approximate inference and scientific method. Information and Computation 114(2):179--191, 1994) introduced a model of approximate learning of recursive functions. The present work extends their research and solves an open problem of Fulk and Jain by showing that there is a learner which approximates and partially identifies every recursive function by outputting a sequence of hypotheses which, in addition, are also almost all finite variants of the target function. The subsequent study is dedicated to the question how these findings generalise to the learning of r.e. languages from positive data. Here three variants of approximate learning will be introduced and investigated with respect to the question whether they can be combined with partial learning. Following the line of Fulk and Jain's research, further investigations provide conditions under which partial language learners can eventually output only finite variants of the target language. The combinabilities of other partial learning criteria will also be briefly studied.Comment: 28 page

    Operator inference for non-intrusive model reduction with quadratic manifolds

    Full text link
    This paper proposes a novel approach for learning a data-driven quadratic manifold from high-dimensional data, then employing this quadratic manifold to derive efficient physics-based reduced-order models. The key ingredient of the approach is a polynomial mapping between high-dimensional states and a low-dimensional embedding. This mapping consists of two parts: a representation in a linear subspace (computed in this work using the proper orthogonal decomposition) and a quadratic component. The approach can be viewed as a form of data-driven closure modeling, since the quadratic component introduces directions into the approximation that lie in the orthogonal complement of the linear subspace, but without introducing any additional degrees of freedom to the low-dimensional representation. Combining the quadratic manifold approximation with the operator inference method for projection-based model reduction leads to a scalable non-intrusive approach for learning reduced-order models of dynamical systems. Applying the new approach to transport-dominated systems of partial differential equations illustrates the gains in efficiency that can be achieved over approximation in a linear subspace

    Learning Graphical Models Using Multiplicative Weights

    Full text link
    We give a simple, multiplicative-weight update algorithm for learning undirected graphical models or Markov random fields (MRFs). The approach is new, and for the well-studied case of Ising models or Boltzmann machines, we obtain an algorithm that uses a nearly optimal number of samples and has quadratic running time (up to logarithmic factors), subsuming and improving on all prior work. Additionally, we give the first efficient algorithm for learning Ising models over general alphabets. Our main application is an algorithm for learning the structure of t-wise MRFs with nearly-optimal sample complexity (up to polynomial losses in necessary terms that depend on the weights) and running time that is nO(t)n^{O(t)}. In addition, given nO(t)n^{O(t)} samples, we can also learn the parameters of the model and generate a hypothesis that is close in statistical distance to the true MRF. All prior work runs in time nΩ(d)n^{\Omega(d)} for graphs of bounded degree d and does not generate a hypothesis close in statistical distance even for t=3. We observe that our runtime has the correct dependence on n and t assuming the hardness of learning sparse parities with noise. Our algorithm--the Sparsitron-- is easy to implement (has only one parameter) and holds in the on-line setting. Its analysis applies a regret bound from Freund and Schapire's classic Hedge algorithm. It also gives the first solution to the problem of learning sparse Generalized Linear Models (GLMs)

    Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

    Full text link
    We introduce a new structured kernel interpolation (SKI) framework, which generalises and unifies inducing point methods for scalable Gaussian processes (GPs). SKI methods produce kernel approximations for fast computations through kernel interpolation. The SKI framework clarifies how the quality of an inducing point approach depends on the number of inducing (aka interpolation) points, interpolation strategy, and GP covariance kernel. SKI also provides a mechanism to create new scalable kernel methods, through choosing different kernel interpolation strategies. Using SKI, with local cubic kernel interpolation, we introduce KISS-GP, which is 1) more scalable than inducing point alternatives, 2) naturally enables Kronecker and Toeplitz algebra for substantial additional gains in scalability, without requiring any grid data, and 3) can be used for fast and expressive kernel learning. KISS-GP costs O(n) time and storage for GP inference. We evaluate KISS-GP for kernel matrix approximation, kernel learning, and natural sound modelling.Comment: 19 pages, 4 figure

    Covariate dimension reduction for survival data via the Gaussian process latent variable model

    Full text link
    The analysis of high dimensional survival data is challenging, primarily due to the problem of overfitting which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here we propose a novel method of extracting a low dimensional representation of covariates in survival data by combining the popular Gaussian Process Latent Variable Model (GPLVM) with a Weibull Proportional Hazards Model (WPHM). The combined model offers a flexible non-linear probabilistic method of detecting and extracting any intrinsic low dimensional structure from high dimensional data. By reducing the covariate dimension we aim to diminish the risk of overfitting and increase the robustness and accuracy with which we infer relationships between covariates and survival outcomes. In addition, we can simultaneously combine information from multiple data sources by expressing multiple datasets in terms of the same low dimensional space. We present results from several simulation studies that illustrate a reduction in overfitting and an increase in predictive performance, as well as successful detection of intrinsic dimensionality. We provide evidence that it is advantageous to combine dimensionality reduction with survival outcomes rather than performing unsupervised dimensionality reduction on its own. Finally, we use our model to analyse experimental gene expression data and detect and extract a low dimensional representation that allows us to distinguish high and low risk groups with superior accuracy compared to doing regression on the original high dimensional data
    • …
    corecore