131 research outputs found

    The Requirements Editor RED

    Get PDF

    Software product lines and variability modeling : A tertiary study

    Get PDF
    Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Context: A software product line is a means to develop a set of products in which variability is a central phenomenon captured in variability models. The field of SPLs and variability have been topics of extensive research over the few past decades. Objective: This research characterizes systematic reviews (SRs) in the field, studies how SRs analyze and use evidence-based results, and identifies how variability is modeled. Method: We conducted a tertiary study as a form of systematic review. Results: 86 SRs were included. SRs have become a widely adopted methodology covering the field broadly otherwise except for variability realization. Numerous variability models exist that cover different development artifacts, but the evidence is insufficient in quantity and immature, and we argue for better evidence. SRs perform well in searching and selecting studies and presenting data. However, their analysis and use of the quality of and evidence in the primary studies often remains shallow, merely presenting of what kinds of evidence exist. Conclusions: There is a need for actionable, context-sensitive, and evaluated solutions rather than novel ones. Different kinds of SRs (SLRs and Maps) need to be better distinguished, and evidence and quality need to be better used in the resulting syntheses. (C) 2019 The Authors. Published by Elsevier Inc.Peer reviewe

    Fujaba days 2009 : proceedings of the 7th international Fujaba days, Eindhoven University of Technology, the Netherlands, November 16-17, 2009

    Get PDF
    Fujaba is an Open Source UML CASE tool project started at the software engineering group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily while retaining full control over their contributions. Multiple Application Domains Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual programming language with a special emphasis on object structure manipulating rules. Today, at least six rather independent tool versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-) engineering tools. International Community According to our knowledge, quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related research activities. In addition, quite a number of Fujaba users send requests for more functionality and extensions. Therefore, the 7th International Fujaba Days aimed at bringing together Fujaba developers and Fujaba users from all over the world to present their ideas and projects and to discuss them with each other and with the Fujaba core development team
    • …
    corecore