3,045 research outputs found

    Enhancing a Search Algorithm to Perform Intelligent Backtracking

    Full text link
    This paper illustrates how a Prolog program, using chronological backtracking to find a solution in some search space, can be enhanced to perform intelligent backtracking. The enhancement crucially relies on the impurity of Prolog that allows a program to store information when a dead end is reached. To illustrate the technique, a simple search program is enhanced. To appear in Theory and Practice of Logic Programming. Keywords: intelligent backtracking, dependency-directed backtracking, backjumping, conflict-directed backjumping, nogood sets, look-back.Comment: To appear in Theory and Practice of Logic Programmin

    An Overview of Backtrack Search Satisfiability Algorithms

    No full text
    Propositional Satisfiability (SAT) is often used as the underlying model for a significan

    The min-conflicts heuristic: Experimental and theoretical results

    Get PDF
    This paper describes a simple heuristic method for solving large-scale constraint satisfaction and scheduling problems. Given an initial assignment for the variables in a problem, the method operates by searching through the space of possible repairs. The search is guided by an ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. We demonstrate empirically that the method performs orders of magnitude better than traditional backtracking techniques on certain standard problems. For example, the one million queens problem can be solved rapidly using our approach. We also describe practical scheduling applications where the method has been successfully applied. A theoretical analysis is presented to explain why the method works so well on certain types of problems and to predict when it is likely to be most effective

    Heuristic Backtracking Algorithms for SAT

    No full text
    In recent years backtrack search SAT solvers have been the subject of dramatic improvements. These improvements allowed SAT solvers to successfully replace BDDs in many areas of formal verification, and also motivated the development of many new challenging problem instances, many of which too hard for the current generation of SAT solvers. As a result, further improvements to SAT technology are expected to have key consequences in formal verification. The objective of this paper is to propose heuristic approaches to the backtrack step of backtrack search SAT solvers, with the goal of increasing the ability of the SAT solver to search different parts of the search space. The proposed heuristics to the backtrack step are inspired by the heuristics proposed in recent years for the branching step of SAT solvers, namely VSIDS and some of its improvements. The preliminary experimental results are promising, and motivate the integration of heuristic backtracking in state-of-the-art SAT solvers. 1

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Hybrid algorithms for distributed constraint satisfaction.

    Get PDF
    A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP which is divided into several inter-related complex local problems, each assigned to a different agent. Thus, each agent has knowledge of the variables and corresponding domains of its local problem together with the constraints relating its own variables (intra-agent constraints) and the constraints linking its local problem to other local problems (inter-agent constraints). DisCSPs have a variety of practical applications including, for example, meeting scheduling and sensor networks. Existing approaches to Distributed Constraint Satisfaction can be mainly classified into two families of algorithms: systematic search and local search. Systematic search algorithms are complete but may take exponential time. Local search algorithms often converge quicker to a solution for large problems but are incomplete. Problem solving could be improved through using hybrid algorithms combining the completeness of systematic search with the speed of local search. This thesis explores hybrid (systematic + local search) algorithms which cooperate to solve DisCSPs. Three new hybrid approaches which combine both systematic and local search for Distributed Constraint Satisfaction are presented: (i) DisHyb; (ii) Multi-Hyb and; (iii) Multi-HDCS. These approaches use distributed local search to gather information about difficult variables and best values in the problem. Distributed systematic search is run with a variable and value ordering determined by the knowledge learnt through local search. Two implementations of each of the three approaches are presented: (i) using penalties as the distributed local search strategy and; (ii) using breakout as the distributed local search strategy. The three approaches are evaluated on several problem classes. The empirical evaluation shows these distributed hybrid approaches to significantly outperform both systematic and local search DisCSP algorithms. DisHyb, Multi-Hyb and Multi-HDCS are shown to substantially speed-up distributed problem solving with distributed systematic search taking less time to run by using the information learnt by distributed local search. As a consequence, larger problems can now be solved in a more practical timeframe
    corecore