45,106 research outputs found

    Point and interval forecasts of age-specific life expectancies: A model averaging approach

    Get PDF
    Background: Any improvement in the forecast accuracy of life expectancy would be beneficial for policy decision regarding the allocation of current and future resources. In this paper, I revisit some methods for forecasting age-specific life expectancies. Objective: This paper proposes a model averaging approach to produce accurate point forecasts of age-specific life expectancies. Methods: Illustrated by data from fourteen developed countries, we compare point and interval fore-casts among ten principal component methods, two random walk methods, and two uni-variate time-series methods. Results: Based on averaged one-step-ahead and ten-step-ahead forecast errors, random walk with drift and Lee-Miller methods are the two most accurate methods for producing point fore-casts. By combining their forecasts, point forecast accuracy is improved. As measured by averaged coverage probability deviance, the Hyndman-Ullah methods generally provide more accurate interval forecasts than the Lee-Carter methods. However, the Hyndman-Ullah methods produce wider half-widths of prediction interval than the Lee-Carter meth-ods. Conclusions: Model averaging approach should be considered to produce more accurate point forecasts

    Multi‐diagnostic multi‐model ensemble forecasts of aviation turbulence

    Get PDF
    Turbulence is one of the major weather hazards to aviation. Studies have shown that clear‐air turbulence may well occur more frequently with future climate change. Currently the two World Area Forecast Centres use deterministic models to generate forecasts of turbulence. It has been shown that the use of multi‐model ensembles can lead to more skilful turbulence forecasts. It has also been shown that the combination of turbulence diagnostics can also produce more skilful forecasts using deterministic models. This study puts the two approaches together to expand the range of diagnostics to include predictors of both convective and mountain wave turbulence, in addition to clear‐air turbulence, using two ensemble model systems. Results from a 12 month global trial from September 2016 to August 2017 show the increased skill and economic value of including a wider range of diagnostics in a multi‐diagnostic multi‐model ensemble

    Model confidence sets and forecast combination: an application to age-specific mortality

    Get PDF
    Background: Model averaging combines forecasts obtained from a range of models, and it often produces more accurate forecasts than a forecast from a single model. Objective: The crucial part of forecast accuracy improvement in using the model averaging lies in the determination of optimal weights from a finite sample. If the weights are selected sub-optimally, this can affect the accuracy of the model-averaged forecasts. Instead of choosing the optimal weights, we consider trimming a set of models before equally averaging forecasts from the selected superior models. Motivated by Hansen et al. (2011), we apply and evaluate the model confidence set procedure when combining mortality forecasts. Data & Methods: The proposed model averaging procedure is motivated by Samuels and Sekkel (2017) based on the concept of model confidence sets as proposed by Hansen et al. (2011) that incorporates the statistical significance of the forecasting performance. As the model confidence level increases, the set of superior models generally decreases. The proposed model averaging procedure is demonstrated via national and sub-national Japanese mortality for retirement ages between 60 and 100+. Results: Illustrated by national and sub-national Japanese mortality for ages between 60 and 100+, the proposed model-average procedure gives the smallest interval forecast errors, especially for males. Conclusion: We find that robust out-of-sample point and interval forecasts may be obtained from the trimming method. By robust, we mean robustness against model misspecification

    Monetary Policy Forecasting in a DSGE Model with Data that is Uncertain, Unbalanced and About the Future

    Get PDF
    If theory-consistent models can ever hope to forecast well and to be useful for policy, they have to relate to data which though rich in information is uncertain, unbalanced and sometimes forecasts from external sources about the future path of other variables. One example from many is financial market data, which can help but only after smoothing out irrelevant short-term volatility. In this paper we propose combining different types of useful but awkward data set with a linearised forward-looking DSGE model through a Kalman Filter fixed-interval smoother to improve the utility of these models as policy tools. We apply this scheme to a model for Colombia.Monetary Policy, DSGE, Forecast, Kalman Filter Classification JEL: F47, E01, C61.

    Forecasting stock market volatility and the informational efficiency of the DAX-index options market

    Get PDF
    Alternative strategies for predicting stock market volatility are examined. In out-of-sample forecasting experiments implied-volatility information, derived from contemporaneously observed option prices or history-based volatility predictors, such as GARCH models, are investigated, to determine if they are more appropriate for predicting future return volatility. Employing German DAX-index return data it is found that past returns do not contain useful information beyond the volatility expectations already reflected in option prices. This supports the efficient market hypothesis for the DAX-index options market

    Forecasting multiple functional time series in a group structure: an application to mortality’

    Get PDF
    When modeling sub-national mortality rates, we should consider three features: (1) how to incorporate any possible correlation among sub-populations to potentially improve forecast accuracy through multi-population joint modeling; (2) how to reconcile sub-national mortality forecasts so that they aggregate adequately across various levels of a group structure; (3) among the forecast reconciliation methods, how to combine their forecasts to achieve improved forecast accuracy. To address these issues, we introduce an extension of grouped univariate functional time series method. We first consider a multivariate functional time series method to jointly forecast multiple related series. We then evaluate the impact and benefit of using forecast combinations among the forecast reconciliation methods. Using the Japanese regional age-specific mortality rates, we investigate one-step-ahead to 15-step-ahead point and interval forecast accuracies of our proposed extension and make recommendations
    corecore