14,868 research outputs found

    A machine learning route between band mapping and band structure

    Get PDF
    The electronic band structure (BS) of solid state materials imprints the multidimensional and multi-valued functional relations between energy and momenta of periodically confined electrons. Photoemission spectroscopy is a powerful tool for its comprehensive characterization. A common task in photoemission band mapping is to recover the underlying quasiparticle dispersion, which we call band structure reconstruction. Traditional methods often focus on specific regions of interests yet require extensive human oversight. To cope with the growing size and scale of photoemission data, we develop a generic machine-learning approach leveraging the information within electronic structure calculations for this task. We demonstrate its capability by reconstructing all fourteen valence bands of tungsten diselenide and validate the accuracy on various synthetic data. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales in conjunction with theory, while realizing a path towards integrating band mapping data into materials science databases

    One for all and all for one: regression checks with many regressors

    Get PDF
    We develop a novel approach to build checks of parametric regression models when many regressors are present, based on a class of sufficiently rich semiparametric alternatives, namely single-index models. We propose an omnibus test based on the kernel method that performs against a sequence of directional nonparametric alternatives as if there was one regressor only, whatever the number of regressors. This test can be viewed as a smooth version of the integrated conditional moment (ICM) test of Bierens. Qualitative information can be easily incorporated into the procedure to enhance power. In an extensive comparative simulation study, we find that our test is little sensitive to the smoothing parameter and performs well in multidimensional settings. We then apply it to a cross-country growth regression model.Dimensionality, Hypothesis testing, Nonparametric methods

    The Modified Bottleneck Assignment Problem in Vector Case ―An Idea to Apply a Clustering Method―

    Get PDF
    In this study, we deal with the bottleneck assignment problem in vector case. This problem is NP-complete. We show an idea that we use a clustering method to divide the original problem into sub problems. Each set of vertices is divided to subsets by a non-hierarchical clustering method. We make the optimal combination of the subsets, then vertices in the subset are corresponded according to the subsets’ combinations. We show the effect of this idea by the numerical experiments

    Closing the loop between neural network simulators and the OpenAI Gym

    Full text link
    Since the enormous breakthroughs in machine learning over the last decade, functional neural network models are of growing interest for many researchers in the field of computational neuroscience. One major branch of research is concerned with biologically plausible implementations of reinforcement learning, with a variety of different models developed over the recent years. However, most studies in this area are conducted with custom simulation scripts and manually implemented tasks. This makes it hard for other researchers to reproduce and build upon previous work and nearly impossible to compare the performance of different learning architectures. In this work, we present a novel approach to solve this problem, connecting benchmark tools from the field of machine learning and state-of-the-art neural network simulators from computational neuroscience. This toolchain enables researchers in both fields to make use of well-tested high-performance simulation software supporting biologically plausible neuron, synapse and network models and allows them to evaluate and compare their approach on the basis of standardized environments of varying complexity. We demonstrate the functionality of the toolchain by implementing a neuronal actor-critic architecture for reinforcement learning in the NEST simulator and successfully training it on two different environments from the OpenAI Gym
    corecore