1,486 research outputs found

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Predicting floods with Flickr tags

    Get PDF
    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags ‘#Sandy’ or ‘#flooding’), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak

    Predicting Social Unrest Events with Hidden Markov Models Using GDELT

    Get PDF
    Proactive handling of social unrest events which are common happenings in both democracies and authoritarian regimes requires that the risk of upcoming social unrest event is continuously assessed. Most existing approaches comparatively pay little attention to considering the event development stages. In this paper, we use autocoded events dataset GDELT (Global Data on Events, Location, and Tone) to build a Hidden Markov Models (HMMs) based framework to predict indicators associated with country instability. The framework utilizes the temporal burst patterns in GDELT event streams to uncover the underlying event development mechanics and formulates the social unrest event prediction as a sequence classification problem based on Bayes decision. Extensive experiments with data from five countries in Southeast Asia demonstrate the effectiveness of this framework, which outperforms the logistic regression method by 7% to 27% and the baseline method 34% to 62% for various countries

    An online framework for civil unrest prediction using tweet stream based on tweet weight and event diffusion

    Get PDF
    Twitter is one of most popular Internet-based social networking platform to share feelings, views, and opinions. In recent years, many researchers have utilized the social dynamic property of posted messages or tweets to predict civil unrest in advance. However, existing frameworks fail to describe the low granularity level of tweets and how they work in offline mode. Moreover, most of them do not deal with cases where enough tweet information is not available. To overcome these limitations, this article proposes an online framework for analyzing tweet stream inpredicting future civil unrest events. The framework filters tweet stream and classifies tweets using linear Support Vector Machine (SVM) classifier. After that, the weight of the tweet is measured and distributed among extracted locations to update the overall weight in each location in a day in a fully online manner. The weight history is then used to predict the status of civil unrest in a location. The significant contributions of this article are (i) A new keyword dictionary with keyword score to quantify sentiment in extracting the low granularity level of knowledge (ii) A new diffusion model for extracting locations of interest and distributing the sentiment among the locations utilizing the concept of information diffusion and location graph to handle locations with insufficient information (iii) Estimating the probability of civil unrest and determining the stages of unrest in upcoming days. The performance of the proposed framework has been measured and compared with existing logistic regression based predictive framework. The results showed that the proposed framework outperformed the existing framework in terms of F1 score, accuracy, balanced accuracy, false acceptance rate, false rejection rate, and Matthews correlation coefficient
    • …
    corecore