77,880 research outputs found

    A systematic approach to atomicity decomposition in Event-B

    No full text
    Event-B is a state-based formal method that supports a refinement process in which an abstract model is elaborated towards an implementation in a step-wise manner. One weakness of Event-B is that control flow between events is typically modelled implicitly via variables and event guards. While this fits well with Event-B refinement, it can make models involving sequencing of events more difficult to specify and understand than if control flow was explicitly specified. New events may be introduced in Event-B refinement and these are often used to decompose the atomicity of an abstract event into a series of steps. A second weakness of Event-B is that there is no explicit link between such new events that represent a step in the decomposition of atomicity and the abstract event to which they contribute. To address these weaknesses, atomicity decomposition diagrams support the explicit modelling of control flow and refinement relationships for new events. In previous work,the atomicity decomposition approach has been evaluated manually in the development of two large case studies, a multi media protocol and a spacecraft sub-system. The evaluation results helped us to develop a systematic definition of the atomicity decomposition approach, and to develop a tool supporting the approach. In this paper we outline this systematic definition of the approach, the tool that supports it and evaluate the contribution that the tool makes

    Language and tool support for event refinement structures in Event-B

    No full text
    Event-B is a formal method for modelling and verifying the consistency of chains of model refinements. The event refinement structure (ERS) approach augments Event-B with a graphical notation which is capable of explicit representation of control flows and refinement relationships. In previous work, the ERS approach has been evaluated manually in the development of two large case studies, a multimedia protocol and a spacecraft sub-system. The evaluation results helped us to extend the ERS constructors, to develop a systematic definition of ERS, and to develop a tool supporting ERS. We propose the ERS language which systematically defines the semantics of the ERS graphical notation including the constructors. The ERS tool supports automatic construction of the Event-B models in terms of control flows and refinement relationships. In this paper we outline the systematic definition of ERS including the presentation of constructors, the tool that supports it and evaluate the contribution that ERS and its tool make. Also we present how the systematic definition of ERS and the corresponding tool can ensure a consistent encoding of the ERS diagrams in the Event-B models

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    A design model for Open Distributed Processing systems

    Get PDF
    This paper proposes design concepts that allow the conception, understanding and development of complex technical structures for open distributed systems. The proposed concepts are related to, and partially motivated by, the present work on Open Distributed Processing (ODP). As opposed to the current ODP approach, the concepts are aimed at supporting a design trajectory with several, related abstraction levels. Simple examples are used to illustrate the proposed concepts

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Visualisation of the information resources for cell biology

    Get PDF
    Intelligent multimodal interfaces can facilitate scientists in utilising available information resources. Combining scientific visualisations with interactive and intelligent tools can help create a “habitable” information space. Development of such tools remains largely iterative. We discuss an ongoing implementation of intelligent interactive visualisation of information resources in cell biology

    Experiences using Z animation tools.

    Get PDF
    In this paper we describe our experience of using three different animation systems. We searched for and decided to use these tools in the context of a project which involved developing formal versions (in Z) of informal requirements documents, and then showing the formal versions to people in industry who were not Z users (or users of any formal techniques). So, an animator seemed a good way of showing the behaviour of a system described formally without the audience having to learn Z. A requirement, however, that the tools used have to satisfy is that they correctly animated Z (whatever that may mean) and they behave adequately in terms of speed and presentation. We have to report that none of the tools we looked at satisfy these requirements--though to be fair all of them are still under development
    corecore