130 research outputs found

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    The automotive industry is facing challenges in producing electrical, connected, and autonomous vehicles. Even if these challenges are, from a technical point of view, independent from each other, the market and regulatory bodies require them to be developed and integrated simultaneously. The development of autonomous vehicles implies the development of highly dependable systems. This is a multidisciplinary activity involving knowledge from robotics, computer science, electrical and mechanical engineering, psychology, social studies, and ethics. Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency Braking System, Lane Keep Assistant, and Park Assist, are available. Newer luxury cars can drive by themselves on highways or park automatically, but the end goal is to develop completely autonomous driving vehicles, able to go by themselves, without needing human interventions in any situation. The more vehicles become autonomous, the greater the difficulty in keeping them reliable. It enhances the challenges in terms of development processes since their misbehaviors can lead to catastrophic consequences and, differently from the past, there is no more a human driver to mitigate the effects of erroneous behaviors. Primary threats to dependability come from three sources: misuse from the drivers, design systematic errors, and random hardware failures. These safety threats are addressed under various aspects, considering the particular type of item to be designed. In particular, for the sake of this work, we analyze those related to Functional Safety (FuSa), viewed as the ability of a system to react on time and in the proper way to the external environment. From the technological point of view, these behaviors are implemented by electrical and electronic items. Various standards to achieve FuSa have been released over the years. The first, released in 1998, was the IEC 61508. Its last version is the one released in 2010. This standard defines mainly: • a Functional Safety Management System (FSMS); • methods to determine a Safety Integrated Level (SIL); • methods to determine the probability of failures. To adapt the IEC61508 to the automotive industry’s peculiarity, a newer standard, the ISO26262, was released in 2011 then updated in 2018. This standard provides guidelines about FSMS, called in this case Safety Lifecycle, describing how to develop software and hardware components suitable for functional safety. It also provides a different way to compute the SIL, called in this case Automotive SIL (ASIL), allowing us to consider the average driver’s abilities to control the vehicle in case of failures. Moreover, it describes a way to determine the probability of random hardware failures through Failure Mode, Effects, and Diagnostic Analysis (FMEDA). This dissertation contains contributions to three topics: • random hardware failures mitigation; • improvementoftheISO26262HazardAnalysisandRiskAssessment(HARA); • real-time verification of the embedded software. As the main contribution of this dissertation, I address the safety threats due to random hardware failures (RHFs). For this purpose, I propose a novel simulation-based approach to aid the Failure Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 standard. Thanks to a SPICE-level model of the item, and the adoption of fault injection techniques, it is possible to simulate its behaviors obtaining useful information to classify the various failure modes. The proposed approach evolved from a mere simulation of the item, allowing only an item-level failure mode classification up to a vehicle-level analysis. The propagation of the failure modes’ effects on the whole vehicle enables us to assess the impacts on the vehicle’s drivability, improving the quality of the classifications. It can be advantageous where it is difficult to predict how the item-level misbehaviors propagate to the vehicle level, as in the case of a virtual differential gear or the mobility system of a robot. It has been chosen since it can be considered similar to the novel light vehicles, such as electric scooters, that are becoming more and more popular. Moreover, my research group has complete access to its design since it is realized by our university’s DIANA students’ team. When a SPICE-level simulation is too long to be performed, or it is not possible to develop a complete model of the item due to intellectual property protection rules, it is possible to aid this process through behavioral models of the item. A simulation of this kind has been performed on a mobile robotic system. Behavioral models of the electronic components were used, alongside mechanical simulations, to assess the software failure mitigation capabilities. Another contribution has been obtained by modifying the main one. The idea was to make it possible to aid also the Hazard Analysis and Risk Assessment (HARA). This assessment is performed during the concept phase, so before starting to design the item implementation. Its goal is to determine the hazards involved in the item functionality and their associated levels of risk. The end goal of this phase is a list of safety goals. For each one of these safety goals, an ASIL has to be determined. Since HARA relies only on designers expertise and knowledge, it lacks in objectivity and repeatability. Thanks to the simulation results, it is possible to predict the effects of the failures on the vehicle’s drivability, allowing us to improve the severity and controllability assessment, thus improving the objectivity. Moreover, since simulation conditions can be stored, it is possible, at any time, to recheck the results and to add new scenarios, improving the repeatability. The third group of contributions is about the real-time verification of embedded software. Through Hardware-In-the-Loop (HIL), a software integration verification has been performed to test a fundamental automotive component, mixed-criticality applications, and multi-agent robots. The first of these contributions is about real-time tests on Body Control Modules (BCM). These modules manage various electronic accessories in the vehicle’s body, like power windows and mirrors, air conditioning, immobilizer, central locking. The main characteristics of BCMs are the communications with other embedded computers via the car’s vehicle bus (Controller Area Network) and to have a high number (hundreds) of low-speed I/Os. As the second contribution, I propose a methodology to assess the error recovery system’s effects on mixed-criticality applications regarding deadline misses. The system runs two tasks: a critical airplane longitudinal control and a non-critical image compression algorithm. I start by presenting the approach on a benchmark application containing an instrumented bug into the lower criticality task; then, we improved it by injecting random errors inside the lower criticality task’s memory space through a debugger. In the latter case, thanks to the HIL, it is possible to pause the time domain simulation when the debugger operates and resume it once the injection is complete. In this way, it is possible to interact with the target without interfering with the simulation results, combining a full control of the target with an accurate time-domain assessment. The last contribution of this third group is about a methodology to verify, on multi-agent robots, the synchronization between two agents in charge to move the end effector of a delta robot: the correct position and speed of the end effector at any time is strongly affected by a loss of synchronization. The last two contributions may seem unrelated to the automotive industry, but interest in these applications is gaining. Mixed-criticality systems allow reducing the number of ECUs inside cars (for cost reduction), while the multi-agent approach is helpful to improve the cooperation of the connected cars with respect to other vehicles and the infrastructure. The fourth contribution, contained in the appendix, is about a machine learning application to improve the social acceptance of autonomous vehicles. The idea is to improve the comfort of the passengers by recognizing their emotions. I started with the idea to modify the vehicle’s driving style based on a real-time emotions recognition system but, due to the difficulties of performing such operations in an experimental setup, I move to analyze them offline. The emotions are determined on volunteers’ facial expressions recorded while viewing 3D representa- tions showing different calibrations. Thanks to the passengers’ emotional responses, it is possible to choose the better calibration from the comfort point of view

    Self-Test Libraries Analysis for Pipelined Processors Transition Fault Coverage Improvement

    Get PDF
    Testing digital integrated circuits is generally done using Design-for-Testability (DfT) solutions. Such solutions, however, introduce non-negligible area and timing overheads that can be overcome by adopting functional solutions. In particular, functional test of integrated circuits plays a key role when guaranteeing the device's safety is required during the operative lifetime (in-field test), as required by standards like ISO26262. This can be achieved via the execution of a Self-Test Library (STL) by the device under test (DUT). Nevertheless, developing such test programs requires a significant manual effort, and can be non-trivial when dealing with complex modules. This paper moves the first step in defining a generic and systematic methodology to improve transition delay faults' observability of existing STLs. To do so, we analyze previously devised STLs in order to highlight specific points within test programs to be improved, leading to an increase in the final fault coverage

    Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries

    Get PDF
    The increasing use of lithium batteries and the necessary integration of battery management systems (BMS) has led international standards to demand functional safety in electromobility applications, with a special focus on electric vehicles. This work covers the complete design of an enhanced automotive BMS with functional safety from the concept phase to verification activities. Firstly, a detailed analysis of the intrinsic hazards of lithium-based batteries is performed. Secondly, a hazard and risk assessment of an automotive lithium-based battery is carried out to address the specific risks deriving from the automotive application and the safety goals to be fulfilled to keep it under control. Safety goals lead to the technical safety requirements for the next hardware design and prototyping of a BMS Slave. Finally, the failure rate of the BMS Slave is assessed to verify the compliance of the developed enhanced BMS Slave with the functional safety Automotive Safety Integrity Level (ASIL) C. This paper contributes the design methodology of a BMS complying with ISO 26262 functional safety standard requirements for automotive lithium-based batteries

    A Pattern-based Approach towards Modular Safety Analysis and Argumentation

    Get PDF
    International audienceSafety standards recommend (if not dictate) performing many analyses during the concept phase of development as well as the early adoption of multiple measures at the architectural design level. In practice, the reuse of architectural measures or safety mechanisms is widely-spread, especially in well-understood domains, as is reusing the corresponding safety-cases aiming to document and prove the fulfillment of the underlying safety goals. Safety-cases in the automotive domain are not well-integrated into architectural models and as such do not provide comprehensible and reproducible argumentation nor any evidence for argument correctness. The reuse is mostly ad-hoc, with loss of knowledge and traceability and lack of consistency or process maturity as well as being the most widely spread and cited drawbacks.Using a simplified description of software functions and their most common error management subtypes (avoidance, detection, handling, ..) we propose to define a pattern library covering known solution algorithms and architectural measures/constraints in a seamless holistic model-based approach with corresponding tool support. The pattern libraries would comprise the requirement the pattern covers and the architecture elements/ measures / constraints required and may include deployment or scheduling strategies as well as the supporting safety case template, which would then be integrated into existing development environments. This paper explores this approach using an illustrative example

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    A Methodology for the Design of Safety-Compliant and Secure Communication of Autonomous Vehicles

    Get PDF
    International audience; The automotive industry is increasing its effort towards scientific and technological innovations regarding autonomous vehicles. The expectation is a reduction of road accidents, which are too often caused by human errors. Moreover, technological solutions, such as connected autonomous vehicle platoons, are expected to help humans in emergency situations. In this context, safety and security issues do not yet have a satisfactory answer. In this paper, we address the domain of secure communication among vehicles - especially the issues related to authentication and authorization of inter-vehicular signals and services carrying safety commands. We propose a novel design methodology, where we take a contract-based approach for specifying safety, and combine it in the design flow with the use of the Arrowhead Framework to support security. Furthermore, we present the results through a demo, which employs model-based design for software implementation and the physical realization on autonomous model cars

    A Changing Landscape:On Safety & Open Source in Automated and Connected Driving

    Get PDF

    Special Session: AutoSoC - A Suite of Open-Source Automotive SoC Benchmarks

    Get PDF
    The current demands for autonomous driving generated momentum for an increase in research in the different technologies required for these applications. Nonetheless, the limited access to representative designs and industrial methodologies poses a challenge to the research community. Considering this scenario, there is a high demand for an open-source solution that could support development of research targeting automotive applications. This paper presents the current status of AutoSoC, an automotive SoC benchmark suite that includes hardware and software elements and is entirely open-source. The objective is to provide researchers with an industrial-grade automotive SoC that includes all essential components, is fully customizable, and enables analysis of functional safety solutions and automotive SoC configurations. This paper describes the available configurations of the benchmark including an initial assessment for ASIL B to D configurations
    • …
    corecore