2,553 research outputs found

    Process of Fingerprint Authentication using Cancelable Biohashed Template

    Get PDF
    Template protection using cancelable biometrics prevents data loss and hacking stored templates, by providing considerable privacy and security. Hashing and salting techniques are used to build resilient systems. Salted password method is employed to protect passwords against different types of attacks namely brute-force attack, dictionary attack, rainbow table attacks. Salting claims that random data can be added to input of hash function to ensure unique output. Hashing salts are speed bumps in an attacker’s road to breach user’s data. Research proposes a contemporary two factor authenticator called Biohashing. Biohashing procedure is implemented by recapitulated inner product over a pseudo random number generator key, as well as fingerprint features that are a network of minutiae. Cancelable template authentication used in fingerprint-based sales counter accelerates payment process. Fingerhash is code produced after applying biohashing on fingerprint. Fingerhash is a binary string procured by choosing individual bit of sign depending on a preset threshold. Experiment is carried using benchmark FVC 2002 DB1 dataset. Authentication accuracy is found to be nearly 97\%. Results compared with state-of art approaches finds promising

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Protecting Privacy in Indian Schools: Regulating AI-based Technologies' Design, Development and Deployment

    Get PDF
    Education is one of the priority areas for the Indian government, where Artificial Intelligence (AI) technologies are touted to bring digital transformation. Several Indian states have also started deploying facial recognition-enabled CCTV cameras, emotion recognition technologies, fingerprint scanners, and Radio frequency identification tags in their schools to provide personalised recommendations, ensure student security, and predict the drop-out rate of students but also provide 360-degree information of a student. Further, Integrating Aadhaar (digital identity card that works on biometric data) across AI technologies and learning and management systems (LMS) renders schools a ‘panopticon’. Certain technologies or systems like Aadhaar, CCTV cameras, GPS Systems, RFID tags, and learning management systems are used primarily for continuous data collection, storage, and retention purposes. Though they cannot be termed AI technologies per se, they are fundamental for designing and developing AI systems like facial, fingerprint, and emotion recognition technologies. The large amount of student data collected speedily through the former technologies is used to create an algorithm for the latter-stated AI systems. Once algorithms are processed using machine learning (ML) techniques, they learn correlations between multiple datasets predicting each student’s identity, decisions, grades, learning growth, tendency to drop out, and other behavioural characteristics. Such autonomous and repetitive collection, processing, storage, and retention of student data without effective data protection legislation endangers student privacy. The algorithmic predictions by AI technologies are an avatar of the data fed into the system. An AI technology is as good as the person collecting the data, processing it for a relevant and valuable output, and regularly evaluating the inputs going inside an AI model. An AI model can produce inaccurate predictions if the person overlooks any relevant data. However, the state, school administrations and parents’ belief in AI technologies as a panacea to student security and educational development overlooks the context in which ‘data practices’ are conducted. A right to privacy in an AI age is inextricably connected to data practices where data gets ‘cooked’. Thus, data protection legislation operating without understanding and regulating such data practices will remain ineffective in safeguarding privacy. The thesis undergoes interdisciplinary research that enables a better understanding of the interplay of data practices of AI technologies with social practices of an Indian school, which the present Indian data protection legislation overlooks, endangering students’ privacy from designing and developing to deploying stages of an AI model. The thesis recommends the Indian legislature frame better legislation equipped for the AI/ML age and the Indian judiciary on evaluating the legality and reasonability of designing, developing, and deploying such technologies in schools

    Introduction to Presentation Attacks in Signature Biometrics and Recent Advances

    Full text link
    Applications based on biometric authentication have received a lot of interest in the last years due to the breathtaking results obtained using personal traits such as face or fingerprint. However, it is important not to forget that these biometric systems have to withstand different types of possible attacks. This chapter carries out an analysis of different Presentation Attack (PA) scenarios for on-line handwritten signature verification. The main contributions of this chapter are: i) an updated overview of representative methods for Presentation Attack Detection (PAD) in signature biometrics; ii) a description of the different levels of PAs existing in on-line signature verification regarding the amount of information available to the impostor, as well as the training, effort, and ability to perform the forgeries; and iii) an evaluation of the system performance in signature biometrics under different scenarios considering recent publicly available signature databases, DeepSignDB and SVC2021_EvalDB. This work is in line with recent efforts in the Common Criteria standardization community towards security evaluation of biometric systems.Comment: Chapter of the Handbook of Biometric Anti-Spoofing (Third Edition

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Supporting Safety Analysis of Deep Neural Networks with Automated Debugging and Repair

    Get PDF

    BehaveFormer: A Framework with Spatio-Temporal Dual Attention Transformers for IMU enhanced Keystroke Dynamics

    Full text link
    Continuous Authentication (CA) using behavioural biometrics is a type of biometric identification that recognizes individuals based on their unique behavioural characteristics, like their typing style. However, the existing systems that use keystroke or touch stroke data have limited accuracy and reliability. To improve this, smartphones' Inertial Measurement Unit (IMU) sensors, which include accelerometers, gyroscopes, and magnetometers, can be used to gather data on users' behavioural patterns, such as how they hold their phones. Combining this IMU data with keystroke data can enhance the accuracy of behavioural biometrics-based CA. This paper proposes BehaveFormer, a new framework that employs keystroke and IMU data to create a reliable and accurate behavioural biometric CA system. It includes two Spatio-Temporal Dual Attention Transformer (STDAT), a novel transformer we introduce to extract more discriminative features from keystroke dynamics. Experimental results on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb) demonstrate that BehaveFormer outperforms the state-of-the-art behavioural biometric-based CA systems. For instance, on the HuMIdb dataset, BehaveFormer achieved an EER of 2.95\%. Additionally, the proposed STDAT has been shown to improve the BehaveFormer system even when only keystroke data is used. For example, on the Aalto DB dataset, BehaveFormer achieved an EER of 1.80\%. These results demonstrate the effectiveness of the proposed STDAT and the incorporation of IMU data for behavioural biometric authentication

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore