24,546 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned

    Get PDF
    Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types

    Drug prescription support in dental clinics through drug corpus mining

    Get PDF
    The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients

    Case-based reasoning combined with statistics for diagnostics and prognosis

    Get PDF
    Many approaches used for diagnostics today are based on a precise model. This excludes diagnostics of many complex types of machinery that cannot be modelled and simulated easily or without great effort. Our aim is to show that by including human experience it is possible to diagnose complex machinery when there is no or limited models or simulations available. This also enables diagnostics in a dynamic application where conditions change and new cases are often added. In fact every new solved case increases the diagnostic power of the system. We present a number of successful projects where we have used feature extraction together with case-based reasoning to diagnose faults in industrial robots, welding, cutting machinery and we also present our latest project for diagnosing transmissions by combining Case-Based Reasoning (CBR) with statistics. We view the fault diagnosis process as three consecutive steps. In the first step, sensor fault signals from machines and/or input from human operators are collected. Then, the second step consists of extracting relevant fault features. In the final diagnosis/prognosis step, status and faults are identified and classified. We view prognosis as a special case of diagnosis where the prognosis module predicts a stream of future features

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Identifying Patient Groups based on Frequent Patterns of Patient Samples

    Full text link
    Grouping patients meaningfully can give insights about the different types of patients, their needs, and the priorities. Finding groups that are meaningful is however very challenging as background knowledge is often required to determine what a useful grouping is. In this paper we propose an approach that is able to find groups of patients based on a small sample of positive examples given by a domain expert. Because of that, the approach relies on very limited efforts by the domain experts. The approach groups based on the activities and diagnostic/billing codes within health pathways of patients. To define such a grouping based on the sample of patients efficiently, frequent patterns of activities are discovered and used to measure the similarity between the care pathways of other patients to the patients in the sample group. This approach results in an insightful definition of the group. The proposed approach is evaluated using several datasets obtained from a large university medical center. The evaluation shows F1-scores of around 0.7 for grouping kidney injury and around 0.6 for diabetes
    corecore