107,305 research outputs found

    A hybrid approach combining control theory and AI for engineering self-adaptive systems

    Get PDF
    Control theoretical techniques have been successfully adopted as methods for self-adaptive systems design to provide formal guarantees about the effectiveness and robustness of adaptation mechanisms. However, the computational effort to obtain guarantees poses severe constraints when it comes to dynamic adaptation. In order to solve these limitations, in this paper, we propose a hybrid approach combining software engineering, control theory, and AI to design for software self-adaptation. Our solution proposes a hierarchical and dynamic system manager with performance tuning. Due to the gap between high-level requirements specification and the internal knob behavior of the managed system, a hierarchically composed components architecture seek the separation of concerns towards a dynamic solution. Therefore, a two-layered adaptive manager was designed to satisfy the software requirements with parameters optimization through regression analysis and evolutionary meta-heuristic. The optimization relies on the collection and processing of performance, effectiveness, and robustness metrics w.r.t control theoretical metrics at the offline and online stages. We evaluate our work with a prototype of the Body Sensor Network (BSN) in the healthcare domain, which is largely used as a demonstrator by the community. The BSN was implemented under the Robot Operating System (ROS) architecture, and concerns about the system dependability are taken as adaptation goals. Our results reinforce the necessity of performing well on such a safety-critical domain and contribute with substantial evidence on how hybrid approaches that combine control and AI-based techniques for engineering self-adaptive systems can provide effective adaptation

    How reliable are systematic reviews in empirical software engineering?

    Get PDF
    BACKGROUND – the systematic review is becoming a more commonly employed research instrument in empirical software engineering. Before undue reliance is placed on the outcomes of such reviews it would seem useful to consider the robustness of the approach in this particular research context. OBJECTIVE – the aim of this study is to assess the reliability of systematic reviews as a research instrument. In particular we wish to investigate the consistency of process and the stability of outcomes. METHOD – we compare the results of two independent reviews under taken with a common research question. RESULTS – the two reviews find similar answers to the research question, although the means of arriving at those answers vary. CONCLUSIONS – in addressing a well-bounded research question, groups of researchers with similar domain experience can arrive at the same review outcomes, even though they may do so in different ways. This provides evidence that, in this context at least, the systematic review is a robust research method

    Making Software Cost Data Available for Meta-Analysis

    Get PDF
    In this paper we consider the increasing need for meta-analysis within empirical software engineering. However, we also note that a necessary precondition to such forms of analysis is to have both the results in an appropriate format and sufficient contextual information to avoid misleading inferences. We consider the implications in the field of software project effort estimation and show that for a sample of 12 seemingly similar published studies, the results are difficult to compare let alone combine. This is due to different reporting conventions. We argue that a protocol is required and make some suggestions as to what it should contain

    The Need and Requirements to a Strategy Ontology

    Get PDF
    The importance of strategy and strategy construct is not a new phenomenon. However as strategy work becomes less tangible, concerns with understanding, describing, and managing strategies develops into an increasingly complex subject. Current strategy concepts are dispersed and lack integration. Moreover, the enablement of modelling practices around strategy concepts considering the entire strategy lifecycle are also missing. Consequently, this paper focuses on issues with strategy in theory and practice, why a strategy ontology is needed and how this can be developed

    The consistency of empirical comparisons of regression and analogy-based software project cost prediction

    Get PDF
    OBJECTIVE - to determine the consistency within and between results in empirical studies of software engineering cost estimation. We focus on regression and analogy techniques as these are commonly used. METHOD – we conducted an exhaustive search using predefined inclusion and exclusion criteria and identified 67 journal papers and 104 conference papers. From this sample we identified 11 journal papers and 9 conference papers that used both methods. RESULTS – our analysis found that about 25% of studies were internally inconclusive. We also found that there is approximately equal evidence in favour of, and against analogy-based methods. CONCLUSIONS – we confirm the lack of consistency in the findings and argue that this inconsistent pattern from 20 different studies comparing regression and analogy is somewhat disturbing. It suggests that we need to ask more detailed questions than just: “What is the best prediction system?

    A model-based approach to language integration

    Get PDF
    The interactions of several languages within a soft- ware system pose a number of problems. There is several anecdotal and empirical evidence supporting such concerns. This paper presents a solution to achieve proper language integration in the context of language workbenches and with limited effort. A simple example is presented to show how cross- language constraints can be addressed and the quality of the support attainable, which covers error-checking and refactoring. A research agenda is then presented, to support future work in the area of language integration, taking advantage of modern language workbenches features

    Software project economics: A roadmap

    Get PDF
    The objective of this paper is to consider research progress in the field of software project economics with a view to identifying important challenges and promising research directions. I argue that this is an important sub-discipline since this will underpin any cost-benefit analysis used to justify the resourcing, or otherwise, of a software project. To accomplish this I conducted a bibliometric analysis of peer reviewed research articles to identify major areas of activity. My results indicate that the primary goal of more accurate cost prediction systems remains largely unachieved. However, there are a number of new and promising avenues of research including: how we can combine results from primary studies, integration of multiple predictions and applying greater emphasis upon the human aspects of prediction tasks. I conclude that the field is likely to remain very challenging due to the people-centric nature of software engineering, since it is in essence a design task. Nevertheless the need for good economic models will grow rather than diminish as software becomes increasingly ubiquitous

    Software Engineering Challenges for Investigating Cyber-Physical Incidents

    Get PDF
    Cyber-Physical Systems (CPS) are characterized by the interplay between digital and physical spaces. This characteristic has extended the attack surface that could be exploited by an offender to cause harm. An increasing number of cyber-physical incidents may occur depending on the configuration of the physical and digital spaces and their interplay. Traditional investigation processes are not adequate to investigate these incidents, as they may overlook the extended attack surface resulting from such interplay, leading to relevant evidence being missed and testing flawed hypotheses explaining the incidents. The software engineering research community can contribute to addressing this problem, by deploying existing formalisms to model digital and physical spaces, and using analysis techniques to reason about their interplay and evolution. In this paper, supported by a motivating example, we describe some emerging software engineering challenges to support investigations of cyber-physical incidents. We review and critique existing research proposed to address these challenges, and sketch an initial solution based on a meta-model to represent cyber-physical incidents and a representation of the topology of digital and physical spaces that supports reasoning about their interplay

    Feature weighting techniques for CBR in software effort estimation studies: A review and empirical evaluation

    Get PDF
    Context : Software effort estimation is one of the most important activities in the software development process. Unfortunately, estimates are often substantially wrong. Numerous estimation methods have been proposed including Case-based Reasoning (CBR). In order to improve CBR estimation accuracy, many researchers have proposed feature weighting techniques (FWT). Objective: Our purpose is to systematically review the empirical evidence to determine whether FWT leads to improved predictions. In addition we evaluate these techniques from the perspectives of (i) approach (ii) strengths and weaknesses (iii) performance and (iv) experimental evaluation approach including the data sets used. Method: We conducted a systematic literature review of published, refereed primary studies on FWT (2000-2014). Results: We identified 19 relevant primary studies. These reported a range of different techniques. 17 out of 19 make benchmark comparisons with standard CBR and 16 out of 17 studies report improved accuracy. Using a one-sample sign test this positive impact is significant (p = 0:0003). Conclusion: The actionable conclusion from this study is that our review of all relevant empirical evidence supports the use of FWTs and we recommend that researchers and practitioners give serious consideration to their adoption
    • …
    corecore