902 research outputs found

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    A potential reduction approach to the frequency assignment problem

    Get PDF
    AbstractThe frequency assignment problem is the problem of assigning frequencies to transmission links such that either no interference occurs, or the amount of interference is minimized. We present an approximation algorithm for this problem that is inspired by Karmarkar's interior point potential reduction approach to combinatorial optimization problems. A non convex quadratic model of the problem is developed, that is very compact as all interference constraints are incorporated in the objective function. Moreover, optimizing this model may result in finding multiple solutions to the problem simultaneouly. Several preprocessing techniques are discussed. We report on computational experience with both real-life and randomly generated instances

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Complexity of optimizing over the integers

    Full text link
    In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like "input", "size" and "complexity" in the context of general mathematical optimization, avoiding context dependent definitions which is one of the sources of difference in the treatment of complexity within continuous and discrete optimization. In the second part of the paper, we employ the language developed in the first part to study information theoretic and algorithmic complexity of {\em mixed-integer convex optimization}, which contains as a special case continuous convex optimization on the one hand and pure integer optimization on the other. We strive for the maximum possible generality in our exposition. We hope that this paper contains material that both continuous optimizers and discrete optimizers find new and interesting, even though almost all of the material presented is common knowledge in one or the other community. We see the main merit of this paper as bringing together all of this information under one unifying umbrella with the hope that this will act as yet another catalyst for more interaction across the continuous-discrete divide. In fact, our motivation behind Part I of the paper is to provide a common language for both communities

    Semidefinite Programming. methods and algorithms for energy management

    Get PDF
    La présente thèse a pour objet d explorer les potentialités d une méthode prometteuse de l optimisation conique, la programmation semi-définie positive (SDP), pour les problèmes de management d énergie, à savoir relatifs à la satisfaction des équilibres offre-demande électrique et gazier.Nos travaux se déclinent selon deux axes. Tout d abord nous nous intéressons à l utilisation de la SDP pour produire des relaxations de problèmes combinatoires et quadratiques. Si une relaxation SDP dite standard peut être élaborée très simplement, il est généralement souhaitable de la renforcer par des coupes, pouvant être déterminées par l'étude de la structure du problème ou à l'aide de méthodes plus systématiques. Nous mettons en œuvre ces deux approches sur différentes modélisations du problème de planification des arrêts nucléaires, réputé pour sa difficulté combinatoire. Nous terminons sur ce sujet par une expérimentation de la hiérarchie de Lasserre, donnant lieu à une suite de SDP dont la valeur optimale tend vers la solution du problème initial.Le second axe de la thèse porte sur l'application de la SDP à la prise en compte de l'incertitude. Nous mettons en œuvre une approche originale dénommée optimisation distributionnellement robuste , pouvant être vue comme un compromis entre optimisation stochastique et optimisation robuste et menant à des approximations sous forme de SDP. Nous nous appliquons à estimer l'apport de cette approche sur un problème d'équilibre offre-demande avec incertitude. Puis, nous présentons une relaxation SDP pour les problèmes MISOCP. Cette relaxation se révèle être de très bonne qualité, tout en ne nécessitant qu un temps de calcul raisonnable. La SDP se confirme donc être une méthode d optimisation prometteuse qui offre de nombreuses opportunités d'innovation en management d énergie.The present thesis aims at exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for addressing some difficult problems of energy management. We pursue two main objectives. The first one consists of using SDP to provide tight relaxations of combinatorial and quadratic problems. A first relaxation, called standard can be derived in a generic way but it is generally desirable to reinforce them, by means of tailor-made tools or in a systematic fashion. These two approaches are implemented on different models of the Nuclear Outages Scheduling Problem, a famous combinatorial problem. We conclude this topic by experimenting the Lasserre's hierarchy on this problem, leading to a sequence of semidefinite relaxations whose optimal values tends to the optimal value of the initial problem.The second objective deals with the use of SDP for the treatment of uncertainty. We investigate an original approach called distributionnally robust optimization , that can be seen as a compromise between stochastic and robust optimization and admits approximations under the form of a SDP. We compare the benefits of this method w.r.t classical approaches on a demand/supply equilibrium problem. Finally, we propose a scheme for deriving SDP relaxations of MISOCP and we report promising computational results indicating that the semidefinite relaxation improves significantly the continuous relaxation, while requiring a reasonable computational effort.SDP therefore proves to be a promising optimization method that offers great opportunities for innovation in energy management.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Distributed Model-based Control for Gas Turbine Engines

    Get PDF
    Controlling a gas turbine engine is a fascinating problem. As one of the most complex systems developed, it relies on thermodynamics, fluid mechanics, materials science as well as electrical, control and systems engineering. The evolution of gas turbine engines is marked with an increase in the number of actuators. Naturally, this increase in actuation capability has also been followed by the improvement of other technologies such as advanced high-temperature and lighter materials, improving the efficiency of the aero engines by extending their physical limits. An improvement in the way to control the engine has to be undertaken in order for these technological improvements to be fully harnessed. This starts with the selection of a novel control system architecture and is followed by the design of new control techniques. Model-based control methods relying on distributed architectures have been studied in the past for their ability to handle constraints and to provide optimal control strategies. Applying them to gas turbine engines is interesting for three main reasons. First of all, distributed control architectures provide greater modularity during the design than centralized control architectures. Secondly, they can reduce the life cycle costs linked to both the fuel burnt and the maintenance by bringing optimal control decisions. Finally, distributing the control actions can increase flight safety through improved robustness as well as fault tolerance. This thesis is concerned with the optimal selection of a distributed control system architecture that minimizes the number of subsystem to subsystem interactions. The control system architecture problem is formulated as a binary integer linear programming problem where cuts are added to remove the uncontrollable partitions obtained. Then a supervised-distributed control technique is presented whereby a supervisory agent optimizes the joint communication and system performance metrics periodically. This online optimal technique is cast as a semi-definite programming problem including a bilinear matrix equality and solved using an alternate convex search. Finally, an extension of this online optimal control technique is presented for non-linear systems modelled by linear parameter-varying models
    corecore