290 research outputs found

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications

    Traveled Distance Estimation Algorithm for Indoor Localization

    Get PDF
    This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%

    A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

    Get PDF
    The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR), Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF), Visible Light, Pedestrian Dead Reckoning (PDR)/Inertial Navigation System (INS) and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB), Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN), Radio-Frequency Identification (RFID) and Near Field Communication (NFC). In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Received Signal Strength Indication (RSSI), while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation

    Indoor Localization Using a Smartphone: Approaches, Issues, and Challenges

    Get PDF
    Localization has gained priority in an increasingly inter-connected world. The majority of industries and sectors require some means of tracking the location of objects and/or people anywhere on the Earth, whether indoors or outdoors. GPS is an already-implemented and viable solution for outdoor localization. However, indoor localization is more challenging to implement and thus has become a broad area of research. Despite the challenges of tracking location in places where satellite GPS signals are unreliable or unreachable (i.e. within a building or structure), there has been considerable progress made in indoor localization research. Although current indoor localization technology can achieve certain accuracy, they usually requires extra equipment and thus can be too cumbersome and/or expensive for common purposes. A relatively new field of indoor localization research involves using the sensors built into smartphones to triangulate a user’s position within a structure. This eliminates the requirement for extra cumbersome sensors or accessories. This honors thesis surveys the current sphere of smartphone-based indoor localization research, analyzing the state-of-the-art approaches, their benefits and drawbacks. A test-bed is also developed to facilitate the evaluation of each method mentioned in this thesis

    Motion tracking problems in Internet of Things (IoT) and wireless networking

    Get PDF
    The dissertation focuses on inferring various motion patterns of internet-of-things (IoT) devices, by leveraging inertial sensors embedded in these objects, as well as wireless signals emitted (or reflected) from them. For instance, we use a combination of GPS signals and inertial sensors on drones to precisely track its 3D orientation over time, ultimately improving safety against failures and crashes. In another application in sports analytics, we embed sensors and radios inside baseballs and cricket balls and compute their 3D trajectory and spin patterns, even when they move at extremely high speeds. In a third application for wireless networks, we explore the possibility of physically moving wireless infrastructure like Access Points and basestations on robots and drones for enhancing the network performance. While these are diverse applications in drones, sports analytics, and wireless networks, the common theme underlying the research is in the development of the core motion-related building blocks. Specifically, we emphasize the philosophy of "fusion of multi modal sensor data with application specific model” as the design principle for building the next generation of diverse IoT applications. To this end, we draw on theoretical techniques in wireless communication, signal processing, and statistics, but translate them to completely functional systems on real-world platforms
    corecore