2,164 research outputs found

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    A Multi-label Text Classification Framework: Using Supervised and Unsupervised Feature Selection Strategy

    Get PDF
    Text classification, the task of metadata to documents, needs a person to take significant time and effort. Since online-generated contents are explosively growing, it becomes a challenge for manually annotating with large scale and unstructured data. Recently, various state-or-art text mining methods have been applied to classification process based on the keywords extraction. However, when using these keywords as features in the classification task, it is common that the number of feature dimensions is large. In addition, how to select keywords from documents as features in the classification task is a big challenge. Especially, when using traditional machine learning algorithms in big data, the computation time is very long. On the other hand, about 80% of real data is unstructured and non-labeled in the real world. The conventional supervised feature selection methods cannot be directly used in selecting entities from massive data. Usually, statistical strategies are utilized to extract features from unlabeled data for classification tasks according to their importance scores. We propose a novel method to extract key features effectively before feeding them into the classification assignment. Another challenge in the text classification is the multi-label problem, the assignment of multiple non-exclusive labels to documents. This problem makes text classification more complicated compared with a single label classification. For the above issues, we develop a framework for extracting data and reducing data dimension to solve the multi-label problem on labeled and unlabeled datasets. In order to reduce data dimension, we develop a hybrid feature selection method that extracts meaningful features according to the importance of each feature. The Word2Vec is applied to represent each document by a feature vector for the document categorization for the big dataset. The unsupervised approach is used to extract features from real online-generated data for text classification. Our unsupervised feature selection method is applied to extract depression symptoms from social media such as Twitter. In the future, these depression symptoms will be used for depression self-screening and diagnosis

    Mining User Personality from Music Listening Behavior in Online Platforms Using Audio Attributes

    Get PDF
    Music and emotions are inherently intertwined. Humans leave hints of their personality everywhere, and particularly their music listening behavior shows conscious and unconscious diametric tendencies and influences. So, what could be more elegant than finding the underlying character given the attributes of a certain music piece and, as such, identifying the likelihood that music preference is also imprinted or at least resonating with its listener? This thesis focuses on the music audio attributes or the latent song features to determine human personality. Based on unsupervised learning, we cluster several large music datasets using multiple clustering techniques known to us. This analysis led us to classify song genres based on audio attributes, which can be deemed a novel contribution in the intersection of Music Information Retrieval (MIR) and human psychology studies. Existing research found a relationship between Myers-Briggs personality models and music genres. Our goal was to correlate audio attributes with the music genre, which will ultimately help us to determine user personality based on their music listening behavior from online music platforms. This target has been achieved as we showed the users’ spectral personality traits from the audio feature values of the songs they listen to online and verified our decision process with the help of a customized Music Recommendation System (MRS). Our model performs genre classification and personality detection with 78% and 74% accuracy, respectively. The results are promising compared to competitor approaches as they are explainable via statistics and visualizations. Furthermore, the RS completes and validates our pursuit through 81.3% accurate song suggestions. We believe the outcome of this thesis will work as an inspiration and assistance for fellow researchers in this arena to come up with more personalized song suggestions. As music preferences will shape specific user personality parameters, it is expected that more such elements will surface that would portray the daily activities of individuals and their underlying mentality

    Human-in-the-Loop Learning From Crowdsourcing and Social Media

    Get PDF
    Computational social studies using public social media data have become more and more popular because of the large amount of user-generated data available. The richness of social media data, coupled with noise and subjectivity, raise significant challenges for computationally studying social issues in a feasible and scalable manner. Machine learning problems are, as a result, often subjective or ambiguous when humans are involved. That is, humans solving the same problems might come to legitimate but completely different conclusions, based on their personal experiences and beliefs. When building supervised learning models, particularly when using crowdsourced training data, multiple annotations per data item are usually reduced to a single label representing ground truth. This inevitably hides a rich source of diversity and subjectivity of opinions about the labels. Label distribution learning associates for each data item a probability distribution over the labels for that item, thus it can preserve diversities of opinions, beliefs, etc. that conventional learning hides or ignores. We propose a humans-in-the-loop learning framework to model and study large volumes of unlabeled subjective social media data with less human effort. We study various annotation tasks given to crowdsourced annotators and methods for aggregating their contributions in a manner that preserves subjectivity and disagreement. We introduce a strategy for learning label distributions with only five-to-ten labels per item by aggregating human-annotated labels over multiple, semantically related data items. We conduct experiments using our learning framework on data related to two subjective social issues (work and employment, and suicide prevention) that touch many people worldwide. Our methods can be applied to a broad variety of problems, particularly social problems. Our experimental results suggest that specific label aggregation methods can help provide reliable representative semantics at the population level
    corecore