334 research outputs found

    Texture analysis and Its applications in biomedical imaging: a survey

    Get PDF
    Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis.Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.Manuscript received February 3, 2021; revised June 23, 2021; accepted September 21, 2021. Date of publication September 27, 2021; date of current version January 24, 2022. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grants PTDC/EMD-EMD/28039/2017, UIDB/04950/2020, PestUID/NEU/04539/2019, and CENTRO-01-0145-FEDER-000016 and by FEDER-COMPETE under Grant POCI-01-0145-FEDER-028039. (Corresponding author: Rui Bernardes.)info:eu-repo/semantics/publishedVersio

    Colour and texture image analysis in a Local Binary Pattern framework

    Get PDF
    In this Thesis we use colour and Local Binary Pattern based texture analysis for image classification and reconstruction. In complementary work we offer a new texture description called the Sudoku transform, an extension of the Local Binary Pattern. Our new method when used to classify members of benchmark datasets shows a performance increment over traditional methods including the Local Binary Pattern. Finally we consider the invertibility of texture descriptions and show how with our new method - Quadratic Reconstruction - that a highly accurate image can be recovered purely from its textural information

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    Towards PACE-CAD Systems

    Get PDF
    Despite phenomenal advancements in the availability of medical image datasets and the development of modern classification algorithms, Computer-Aided Diagnosis (CAD) has had limited practical exposure in the real-world clinical workflow. This is primarily because of the inherently demanding and sensitive nature of medical diagnosis that can have far-reaching and serious repercussions in case of misdiagnosis. In this work, a paradigm called PACE (Pragmatic, Accurate, Confident, & Explainable) is presented as a set of some of must-have features for any CAD. Diagnosis of glaucoma using Retinal Fundus Images (RFIs) is taken as the primary use case for development of various methods that may enrich an ordinary CAD system with PACE. However, depending on specific requirements for different methods, other application areas in ophthalmology and dermatology have also been explored. Pragmatic CAD systems refer to a solution that can perform reliably in day-to-day clinical setup. In this research two, of possibly many, aspects of a pragmatic CAD are addressed. Firstly, observing that the existing medical image datasets are small and not representative of images taken in the real-world, a large RFI dataset for glaucoma detection is curated and published. Secondly, realising that a salient attribute of a reliable and pragmatic CAD is its ability to perform in a range of clinically relevant scenarios, classification of 622 unique cutaneous diseases in one of the largest publicly available datasets of skin lesions is successfully performed. Accuracy is one of the most essential metrics of any CAD system's performance. Domain knowledge relevant to three types of diseases, namely glaucoma, Diabetic Retinopathy (DR), and skin lesions, is industriously utilised in an attempt to improve the accuracy. For glaucoma, a two-stage framework for automatic Optic Disc (OD) localisation and glaucoma detection is developed, which marked new state-of-the-art for glaucoma detection and OD localisation. To identify DR, a model is proposed that combines coarse-grained classifiers with fine-grained classifiers and grades the disease in four stages with respect to severity. Lastly, different methods of modelling and incorporating metadata are also examined and their effect on a model's classification performance is studied. Confidence in diagnosing a disease is equally important as the diagnosis itself. One of the biggest reasons hampering the successful deployment of CAD in the real-world is that medical diagnosis cannot be readily decided based on an algorithm's output. Therefore, a hybrid CNN architecture is proposed with the convolutional feature extractor trained using point estimates and a dense classifier trained using Bayesian estimates. Evaluation on 13 publicly available datasets shows the superiority of this method in terms of classification accuracy and also provides an estimate of uncertainty for every prediction. Explainability of AI-driven algorithms has become a legal requirement after Europe’s General Data Protection Regulations came into effect. This research presents a framework for easy-to-understand textual explanations of skin lesion diagnosis. The framework is called ExAID (Explainable AI for Dermatology) and relies upon two fundamental modules. The first module uses any deep skin lesion classifier and performs detailed analysis on its latent space to map human-understandable disease-related concepts to the latent representation learnt by the deep model. The second module proposes Concept Localisation Maps, which extend Concept Activation Vectors by locating significant regions corresponding to a learned concept in the latent space of a trained image classifier. This thesis probes many viable solutions to equip a CAD system with PACE. However, it is noted that some of these methods require specific attributes in datasets and, therefore, not all methods may be applied on a single dataset. Regardless, this work anticipates that consolidating PACE into a CAD system can not only increase the confidence of medical practitioners in such tools but also serve as a stepping stone for the further development of AI-driven technologies in healthcare

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Signal processing and machine learning techniques for automatic image-based facial expression recognition

    Get PDF
    PhD ThesisIn this thesis novel signal processing and machine learning techniques are proposed and evaluated for automatic image-based facial expression recognition, which are aimed to progress towards real world operation. A thorough evaluation of the performance of certain image-based expression recognition techniques is performed using a posed database and for the rst time three progressively more challenging spontaneous databases. These methods exploit the principles of sparse representation theory with identity-independent expression recognition using di erence images. The second contribution exploits a low complexity method to extract geometric features from facial expression images. The misalignment problem of the training images is solved and the performance of both geometric and appearance features is assessed on the same three spontaneous databases. A deep network framework that contains auto-encoders is used to form an improved classi er. The nal work focuses upon enhancing the expression recognition performance by the selection and fusion of di erent types of features comprising geometric features and two sorts of appearance features. This provides a rich feature vector by which the best representation of the spontaneous facial features is obtained. Subsequently, the computational complexity is reduced by maintaining important location information by concentrating on the crucial roles of the facial regions as the basic processing instead of the entire face, where the local binary patterns and local phase quantization features are extracted automatically by means of detecting two important regions of the face. Next, an automatic method for splitting the training e ort of the initial network into several networks and multi-classi ers namely a surface network and bottom network are used to solve the problem and to enhance the performance. All methods are evaluated in a MATLAB framework and confusion matrices and average facial expression recognition accuracy are used as the performance metrics.Ministry of Higher Education and Scienti c Research in Iraq (MOHESR
    • …
    corecore