22,796 research outputs found

    Concept discovery innovations in law enforcement: a perspective.

    Get PDF
    In the past decades, the amount of information available to law enforcement agencies has increased significantly. Most of this information is in textual form, however analyses have mainly focused on the structured data. In this paper, we give an overview of the concept discovery projects at the Amsterdam-Amstelland police where Formal Concept Analysis (FCA) is being used as text mining instrument. FCA is combined with statistical techniques such as Hidden Markov Models (HMM) and Emergent Self Organizing Maps (ESOM). The combination of this concept discovery and refinement technique with statistical techniques for analyzing high-dimensional data not only resulted in new insights but often in actual improvements of the investigation procedures.Formal concept analysis; Intelligence led policing; Knowledge discovery;

    The application of process mining to care pathway analysis in the NHS

    Get PDF
    Background: Prostate cancer is the most common cancer in men in the UK and the sixth-fastest increasing cancer in males. Within England survival rates are improving, however, these are comparatively poorer than other countries. Currently, information available on outcomes of care is scant and there is an urgent need for techniques to improve healthcare systems and processes. Aims: To provide prostate cancer pathway analysis, by applying concepts of process mining and visualisation and comparing the performance metrics against the standard pathway laid out by national guidelines. Methods: A systematic review was conducted to see how process mining has been used in healthcare. Appropriate datasets for prostate cancer were identified within Imperial College Healthcare NHS Trust London. A process model was constructed by linking and transforming cohort data from six distinct database sources. The cohort dataset was filtered to include patients who had a PSA from 2010-2015, and validated by comparing the medical patient records against a Case-note audit. Process mining techniques were applied to the data to analyse performance and conformance of the prostate cancer pathway metrics to national guideline metrics. These techniques were evaluated with stakeholders to ascertain its impact on user experience. Results: Case note audit revealed 90% match against patients found in medical records. Application of process mining techniques showed massive heterogeneity as compared to the homogenous path laid out by national guidelines. This also gave insight into bottlenecks and deviations in the pathway. Evaluation with stakeholders showed that the visualisation and technology was well accepted, high quality and recommended to be used in healthcare decision making. Conclusion: Process mining is a promising technique used to give insight into complex and flexible healthcare processes. It can map the patient journey at a local level and audit it against explicit standards of good clinical practice, which will enable us to intervene at the individual and system level to improve care.Open Acces

    Process mining for healthcare: Characteristics and challenges

    Get PDF
    Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Dirección de Investigación de la Vicerrectoría de Investigación de la Pontificia Universidad Católica de Chile - PUENTE [Grant No. 026/ 2021]; and Agencia Nacional de Investigación y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019–21190116, ANID-PFCHA/ Doctorado Nacional/2020–21201411]. With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan).Peer ReviewedArticle signat per 55 autors/es: Jorge Munoz-Gama (a)* , Niels Martin (b,c)* , Carlos Fernandez-Llatas (d,g)* , Owen A. Johnson (e)* , Marcos Sepúlveda (a)* , Emmanuel Helm (f)* , Victor Galvez-Yanjari (a)* , Eric Rojas (a) , Antonio Martinez-Millana (d) , Davide Aloini (k) , Ilaria Angela Amantea (l,q,r) , Robert Andrews (ab), Michael Arias (z) , Iris Beerepoot (o) , Elisabetta Benevento (k) , Andrea Burattin (ai), Daniel Capurro (j) , Josep Carmona (s) , Marco Comuzzi (w), Benjamin Dalmas (aj,ak), Rene de la Fuente (a) , Chiara Di Francescomarino (h) , Claudio Di Ciccio (i) , Roberto Gatta (ad,ae), Chiara Ghidini (h) , Fernanda Gonzalez-Lopez (a) , Gema Ibanez-Sanchez (d) , Hilda B. Klasky (p) , Angelina Prima Kurniati (al), Xixi Lu (o) , Felix Mannhardt (m), Ronny Mans (af), Mar Marcos (v) , Renata Medeiros de Carvalho (m), Marco Pegoraro (x) , Simon K. Poon (ag), Luise Pufahl (u) , Hajo A. Reijers (m,o) , Simon Remy (y) , Stefanie Rinderle-Ma (ah), Lucia Sacchi (t) , Fernando Seoane (g,am,an), Minseok Song (aa), Alessandro Stefanini (k) , Emilio Sulis (l) , Arthur H. M. ter Hofstede (ab), Pieter J. Toussaint (ac), Vicente Traver (d) , Zoe Valero-Ramon (d) , Inge van de Weerd (o) , Wil M.P. van der Aalst (x) , Rob Vanwersch (m), Mathias Weske (y) , Moe Thandar Wynn (ab), Francesca Zerbato (n) // (a) Pontificia Universidad Catolica de Chile, Chile; (b) Hasselt University, Belgium; (c) Research Foundation Flanders (FWO), Belgium; (d) Universitat Politècnica de València, Spain; (e) University of Leeds, United Kingdom; (f) University of Applied Sciences Upper Austria, Austria; (g) Karolinska Institutet, Sweden; (h) Fondazione Bruno Kessler, Italy; (i) Sapienza University of Rome, Italy; (j) University of Melbourne, Australia; (k) University of Pisa, Italy; (l) University of Turin, Italy; (m) Eindhoven University of Technology, The Netherlands; (n) University of St. Gallen, Switzerland; (o) Utrecht University, The Netherlands; (p) Oak Ridge National Laboratory, United States; (q) University of Bologna, Italy; (r) University of Luxembourg, Luxembourg; (s) Universitat Politècnica de Catalunya, Spain; (t) University of Pavia, Italy; (u) Technische Universitaet Berlin, Germany; (v) Universitat Jaume I, Spain; (w) Ulsan National Institute of Science and Technology (UNIST), Republic of Korea; (x) RWTH Aachen University, Germany; (y) University of Potsdam, Germany; (z) Universidad de Costa Rica, Costa Rica; (aa) Pohang University of Science and Technology, Republic of Korea; (ab) Queensland University of Technology, Australia; (ac) Norwegian University of Science and Technology, Norway; (ad) Universita degli Studi di Brescia, Italy; (ae) Lausanne University Hospital (CHUV), Switzerland; (af) Philips Research, the Netherlands; (ag) The University of Sydney, Australia; (ah) Technical University of Munich, Germany; (ai) Technical University of Denmark, Denmark; (aj) Mines Saint-Etienne, France; (ak) Université Clermont Auvergne, France; (al) Telkom University, Indonesia; (am) Karolinska University Hospital, Sweden; (an) University of Borås, SwedenPostprint (published version

    Process mining for healthcare: Characteristics and challenges

    Full text link
    [EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)Munoz Gama, J.; Martin, N.; Fernández Llatas, C.; Johnson, OA.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.10399411512

    Concept Relation Discovery and Innovation Enabling Technology (CORDIET)

    Get PDF
    Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self Organizing Maps (ESOM) and Hidden Markov Models (HMM) as main artifacts in the analysis process. The user can define temporal, text mining and compound attributes. The text mining attributes are used to analyze the unstructured text in documents, the temporal attributes use these document's timestamps for analysis. The compound attributes are XML rules based on text mining and temporal attributes. The user can cluster objects with object-cluster rules and can chop the data in pieces with segmentation rules. The artifacts are optimized for efficient data analysis; object labels in the FCA lattice and ESOM map contain an URL on which the user can click to open the selected document

    Turning Logs into Lumber: Preprocessing Tasks in Process Mining

    Full text link
    Event logs are invaluable for conducting process mining projects, offering insights into process improvement and data-driven decision-making. However, data quality issues affect the correctness and trustworthiness of these insights, making preprocessing tasks a necessity. Despite the recognized importance, the execution of preprocessing tasks remains ad-hoc, lacking support. This paper presents a systematic literature review that establishes a comprehensive repository of preprocessing tasks and their usage in case studies. We identify six high-level and 20 low-level preprocessing tasks in case studies. Log filtering, transformation, and abstraction are commonly used, while log enriching, integration, and reduction are less frequent. These results can be considered a first step in contributing to more structured, transparent event log preprocessing, enhancing process mining reliability.Comment: Accepted by EdbA'23 workshop, co-located with ICPM 202

    Automated Verification of Care Pathways Using Constraint Programming

    Get PDF
    Bad construction of modeled care pathways can lead to satisfiability problems during the pathway execution. These problems can ultimately result in medical errors and need to be checked as formally as possible. Therefore, this study proposes a set of algorithms using a free open-source library dedicated to constraint programming allied with a DSL to encode and verify care pathways, checking four possible problems: states in deadlock, non-determinism, inaccessible steps and transitions with logically equivalent guard conditions. We then test our algorithms in 84 real care pathways used both in hospitals and surgeries. Using our algorithms, we were able to find 200 problems taking less than 1 second to complete the verification on most pathways
    corecore