2,256 research outputs found

    Identification of Evolving Rule-based Models.

    Get PDF
    An approach to identification of evolving fuzzy rule-based (eR) models is proposed. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rules based on ranking using the informative potential of the data. In this way, the rule-base structure is inherited and updated when new informative data become available, rather than being completely retrained. The adaptive nature of these evolving rule-based models, in combination with the highly transparent and compact form of fuzzy rules, makes them a promising candidate for modeling and control of complex processes, competitive to neural networks. The approach has been tested on a benchmark problem and on an air-conditioning component modeling application using data from an installation serving a real building. The results illustrate the viability and efficiency of the approach. (c) IEEE Transactions on Fuzzy System

    A Non-Linear Autoregressive Model for Indoor Air-Temperature Predictions in Smart Buildings

    Get PDF
    In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40% of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short- and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Development of an Artificial Neural Network to Predict In-Use Engine Emissions

    Get PDF
    A method to predict in-use diesel engine emissions is developed based on engine dynamometer and in-use data acquired at the West Virginia University Center for Alternative Fuels, Engines, and Emissions. (WVU CAFEE). The model accounts for the effects of road grade on generated emissions; a need for this model is evident in literature. Current modeling methods do not account for the effects of road grade, and have been shown to under-predict NOx by as much as 57%. It is determined through present research and a review of relevant literature that an artificial neural network (ANN) was the most applicable modeling method.;A modular ANN was developed to predict the heavy duty diesel engine emissions. The two modules were trained independently, the first module was trained with data acquired through in-use testing, and the second module was trained with data acquired via engine dynamometer testing. The first module predicted the engine speed and torque associated with the inputs of road grade and vehicle speed, while the second ANN employed the first ANN\u27s outputs, and predicts the emitted quantities of NOx, CO2, HC, and CO. A series of training and verification runs are conducted in order to determine the optimum ANN characteristics. Once the ANN was finalized, it was trained with and employed to predict the emissions associated with a variety of routes.;When the ANN was trained with a combination of in-use and engine dynamometer data, the ANN is able to predict NOx emissions associated with that same route within 6% of the measured values. The average difference between the measured and predicted CO2 values for the same training and verification scenario mentioned above was less than 15%. It was also demonstrated that the ANN was able to predict emissions that are associated with routes that differ from those by which it is trained. When the ANN was trained with in-use data from a specific route, it was able to predict the NOx and CO2 emissions associated with a different route with percent differences from the measured values of 20% or less

    Computational intelligence techniques for maximum energy efficiency of cogeneration processes based on internal combustion engines

    Get PDF
    153 p.El objeto de la tesis consiste en desarrollar estrategias de modelado y optimización del rendimiento energético de plantas de cogeneración basadas en motores de combustión interna (MCI), mediante el uso de las últimas tecnologías de inteligencia computacional. Con esta finalidad se cuenta con datos reales de una planta de cogeneración de energía, propiedad de la compañía EnergyWorks, situada en la localidad de Monzón (provincia de Huesca). La tesis se realiza en el marco de trabajo conjunto del Grupo de Diseño en Electrónica Digital (GDED) de la Universidad del País Vasco UPV/EHU y la empresa Optimitive S.L., empresa dedicada al software avanzado para la mejora en tiempo real de procesos industriale

    Advanced Methods for Photovoltaic Output Power Forecasting: A Review

    Get PDF
    Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of applications, such as micro-grids (MGs), energy optimization and management, PV integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature has been produced on this topic, investigating numerical and probabilistic methods, physical models, and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review on the recent applications of AI techniques; we will focus particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive. Special attention will be paid to the recent development of the application of DL, as well as to the future trends in this topic

    Development of a virtual methodology based on physical and data-driven models to optimize engine calibration

    Get PDF
    Virtual engine calibration exploiting fully-physical plant models is the most promising solution for the reduction of time and cost of the traditional calibration process based on experimental testing. However, accuracy issues on the estimation of pollutant emissions are still unresolved. In this context, the paper shows how a virtual test rig can be built by combining a fully-physical engine model, featuring predictive combustion and NOx sub-models, with data-driven soot and particle number models. To this aim, a dedicated experimental campaign was carried out on a 1.6 liter EU6 diesel engine. A limited subset of the measured data was used to calibrate the predictive combustion and NOx sub-models. The measured data were also used to develop data-driven models to estimate soot and particulate emissions in terms of Filter Smoke Number (FSN) and Particle Number (PN), respectively. Inputs from engine calibration parameters (e.g., fuel injection timing and pressure) and combustion-related quantities computed by the physical model (e.g., combustion duration), were then merged. In this way, thanks to the combination of the two different datasets, the accuracy of the abovementioned models was improved by 20% for the FSN and 25% for the PN. The coupled physical and data-driven model was then used to optimize the engine calibration (fuel injection, air management) exploiting the Non-dominated Sorting genetic algorithm. The calibration obtained with the virtual methodology was then adopted on the engine test bench. A BSFC improvement of 10 g/kWh and a combustion reduction of 3.0 dB in comparison with the starting calibration was achieved

    A review of artificial neural network models for ambient air pollution prediction

    Get PDF
    Research activity in the field of air pollution forecasting using artificial neural networks (ANNs) has increased dramatically in recent years. However, the development of ANN models entails levels of uncertainty given the black-box nature of ANNs. In this paper, a protocol by Maier et al. (2010) for ANN model development is presented and applied to assess journal papers dealing with air pollution forecasting using ANN models. The majority of the reviewed works are aimed at the long-term forecasting of outdoor PM10, PM2.5, and oxides of nitrogen, and ozone. The vast majority of the identified works utilised meteorological and source emissions predictors almost exclusively. Furthermore, ad-hoc approaches are found to be predominantly used for determining optimal model predictors, appropriate data subsets and the optimal model structure. Multilayer perceptron and ensemble-type models are predominantly implemented. Overall, the findings highlight the need for developing systematic protocols for developing powerful ANN models

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version
    • …
    corecore