2,211 research outputs found

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models

    Real-Time Seamless Single Shot 6D Object Pose Prediction

    Get PDF
    We propose a single-shot approach for simultaneously detecting an object in an RGB image and predicting its 6D pose without requiring multiple stages or having to examine multiple hypotheses. Unlike a recently proposed single-shot technique for this task (Kehl et al., ICCV'17) that only predicts an approximate 6D pose that must then be refined, ours is accurate enough not to require additional post-processing. As a result, it is much faster - 50 fps on a Titan X (Pascal) GPU - and more suitable for real-time processing. The key component of our method is a new CNN architecture inspired by the YOLO network design that directly predicts the 2D image locations of the projected vertices of the object's 3D bounding box. The object's 6D pose is then estimated using a PnP algorithm. For single object and multiple object pose estimation on the LINEMOD and OCCLUSION datasets, our approach substantially outperforms other recent CNN-based approaches when they are all used without post-processing. During post-processing, a pose refinement step can be used to boost the accuracy of the existing methods, but at 10 fps or less, they are much slower than our method.Comment: CVPR 201
    • …
    corecore