3,405 research outputs found

    Constructions of free commutative integro-differential algebras

    Full text link
    In this survey, we outline two recent constructions of free commutative integro-differential algebras. They are based on the construction of free commutative Rota-Baxter algebras by mixable shuffles. The first is by evaluations. The second is by the method of Gr\"obner-Shirshov bases.Comment: arXiv admin note: substantial text overlap with arXiv:1302.004

    Progress Report : 1991 - 1994

    Get PDF

    Polynomial Interpretations over the Natural, Rational and Real Numbers Revisited

    Full text link
    Polynomial interpretations are a useful technique for proving termination of term rewrite systems. They come in various flavors: polynomial interpretations with real, rational and integer coefficients. As to their relationship with respect to termination proving power, Lucas managed to prove in 2006 that there are rewrite systems that can be shown polynomially terminating by polynomial interpretations with real (algebraic) coefficients, but cannot be shown polynomially terminating using polynomials with rational coefficients only. He also proved the corresponding statement regarding the use of rational coefficients versus integer coefficients. In this article we extend these results, thereby giving the full picture of the relationship between the aforementioned variants of polynomial interpretations. In particular, we show that polynomial interpretations with real or rational coefficients do not subsume polynomial interpretations with integer coefficients. Our results hold also for incremental termination proofs with polynomial interpretations.Comment: 28 pages; special issue of RTA 201

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Automated verification of termination certificates

    Get PDF
    In order to increase user confidence, many automated theorem provers provide certificates that can be independently verified. In this paper, we report on our progress in developing a standalone tool for checking the correctness of certificates for the termination of term rewrite systems, and formally proving its correctness in the proof assistant Coq. To this end, we use the extraction mechanism of Coq and the library on rewriting theory and termination called CoLoR

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Formalizing real analysis for polynomials

    Get PDF
    When reasoning formally with polynomials over real numbers, or more generally real closed fields, we need to be able to manipulate easily statements featuring an order relation, either in their conditions or in their conclusion. For instance, we need to state the intermediate value theorem and the mean value theorem and we need tools to ease both their proof and their further use. For that purpose we propose a Coq library for ordered integral domains and ordered fields with decidable comparison. In this paper we present the design choices of this libraries, and show how it has been used as a basis for developing a fare amount of basic real algebraic geometry
    • …
    corecore