79 research outputs found

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die Gewährleistung der Zuverlässigkeit von CMOS-Schaltungen ist derzeit eines der größten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stärkere elektrische Feld stimuliert die Degradationsphänomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stärkeren Degradation (Verschlechterung) der Transistoren führt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stärkere Verschlechterungen ihrer elektrischen Parameter. Um die Funktionalität und Zuverlässigkeit der Schaltung zu wahren, wird es daher unerlässlich, die Auswirkungen der geschwächten Transistoren auf die Schaltung präzise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberücksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen führen (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nächsten Operation abschließen) und die Funktionalität der Schaltung beeinträchtigen (fehlerhafte Ausgabe, verfälschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingeführt. So wird beispielsweise die Taktperiode der Schaltung künstlich verlängert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine längere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, führt dies in der Schaltung zu Fehlern, eine zu große Toleranz führt zu unnötigen Performanzseinbußen. Derzeit verlässt sich die Industrie bei der Zuverlässigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungünstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfähig bleibt. Darüber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lässt sich diese etablierte Praxis der Berücksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese Berücksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stärkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die Degradationphänomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfällt. Dieses Maß an Pessimismus führt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. Während beispielsweise militärische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten müssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre Funktionalität nur für die Dauer der zweijährigen Garantie aufrechterhalten. Für letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der Zuverlässigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen für die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. Für fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen Kühlsysteme für niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die Zuverlässigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge für diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerüstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an Zuverlässigkeitsbestimmungen für beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfüllen. Zu diesem Zweck stellen wir unsere Forschungsbeiträge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der Degradationsphänomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell für die Degradationsphänomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der Degradationsphänomena modelliert, um ihre Wechselwirkungen zu berücksichtigen (z.B. Phänomen A kann Phänomen B beschleunigen) und ein einheitliches Modell für die simultane Modellierung verschiedener Phänomene zu erzeugen. Weiterhin werden die jüngst entdeckten Phänomene ebenfalls modelliert und berücksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger Berücksichtigung aller essenziellen Phänomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die Forschungsbeiträge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte über einem zeitlichen Verlauf) und anschließend die Parallelität heutiger Computerhardware nutzen. Beide Ansätze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berücksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine Zuverlässigkeitsbestimmung für eine spezifische Anwendung (Temperatur, Spannung, Aktivität) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung für spezifische Anwendungen, jedoch muss diese Fähigkeit erst integriert werden. Diese Integration ist eines der Beiträge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale Schaltungsentwürfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht für solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese Forschungsbeiträge, die sich jeweils über mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz für kundenspezifische Anwendungsszenarien zu bestimmen. Für eine gegebene Schaltungslebensdauer, Temperatur, Spannung und Aktivität (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch überschätzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die Zuverlässigkeit und Funktionalität der Schaltung für genau diese Anwendung bei minimalen Performanzeinbußen

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Modeling the Interdependences between Voltage Fluctuation and BTI Aging

    Get PDF
    With technology scaling, the susceptibility of circuits to different reliability degradations is steadily increasing. Aging in transistors due to bias temperature instability (BTI) and voltage fluctuation in the power delivery network of circuits due to IR-drops are the most prominent. In this paper, we are reporting for the first time that there are interdependences between voltage fluctuation and BTI aging that are nonnegligible. Modeling and investigating the joint impact of voltage fluctuation and BTI aging on the delay of circuits, while remaining compatible with the existing standard design flow, is indispensable in order to answer the vital question, “what is an efficient (i.e., small, yet sufficient) timing guardband to sustain the reliability of circuit for the projected lifetime?” This is, concisely, the key goal of this paper. Achieving that would not be possible without employing a physics-based BTI model that precisely describes the underlying generation and recovery mechanisms of defects under arbitrary stress waveforms. For this purpose, our model is validated against varied semiconductor measurements covering a wide range of voltage, temperature, frequency, and duty cycle conditions. To bring reliability awareness to existing EDA tool flows, we create standard cell libraries that contain the delay information of cells under the joint impact of aging and IR-drop. Our libraries can be directly deployed within the standard design flow because they are compatible with existing commercial tools (e.g., Synopsys and Cadence). Hence, designers can leverage the mature algorithms of these tools to accurately estimate the required timing guardbands for any circuit despite its complexity. Our investigation demonstrates that considering aging and IR-drop effects independently, as done in the state of the art, leads to employing insufficient and thus unreliable guardbands because of the nonnegligible (on average 15% and up to 25%) underestimations. Importantly, considering interdependences between aging and IR-drop does not only allow correct guardband estimations, but it also results in employing more efficient guardbands

    Threshold voltage instabilities in MOS transistors with advanced gate dielectrics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    핀펫 소자에서의 핫캐리어 신뢰성 분석

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 신형철.CMOS 로직 소자는 퍼포먼스를 향상시키기 위해 지속적으로 축소화 되고 있다. 하지만 구조 파라미터들의 축소화에 비해 동작 전압은 충분히 감소하지 않는다. 따라서 소자 내 수직 전계나 온도가 증가하는 추세이기 때문에 신뢰성은 계속해서 문제가 되고 있다. 최근 3D 소자의 신뢰성에 대한 연구는 많이 진행되고 있지만 empirical 모델링과 관련된 연구가 대부분이다. 따라서 본 연구에서는 실제 측정을 기반으로 시뮬레이션을 이용하여 물리적 이론 중심으로 로직 소자의 핫캐리어 신뢰성을 분석하였다. 먼저 핫캐리어 모델의 정확성을 향상시키기 위해서 TCAD 시뮬레이션에 electron-electron scattering을 적용하였다. 추가적으로 3D FinFET의 측정 데이터와 calibration을 진행하여 모델의 정합성을 확인하였다. calibration 과정에서는 모든 scattering 메커니즘을 고려하기 위해 다양한 전압과 온도 조건이 필요하다. 따라서 다양한 전압 조건에 따른 HCD를 분석하고, calibration을 진행하여 HCD 모델의 파라미터를 추출하였다. 다음으로 전압 조건에 따른 HCD의 온도 경향성을 분석하였다. oxide trap과 달리 interface trap은 전압 조건에 따라 다른 온도 경향성을 보인다. 따라서 interface trap을 3가지 성분으로 분리하여 각 성분의 온도 경향성을 분석하였다. Multiple particle process(MP)과 field enhanced thermal degradation process(FP)는 전압 조건과 상관없이 일정한 온도 경향성을 가진다. 반면 Single particle process(SP)는 scattering의 영향을 받기 때문에 온도 경향성은 전압 조건에 따라 달라진다. 온도 경향성 분석 과정에서도 calibration을 진행하며 여러 번의 iteration을 통해 다양한 전압 및 온도가 고려된 파라미터를 추출한다. 추출된 파라미터를 적용한 시뮬레이션 모델은 기존의 모델보다 더 정확하게 HCD 측정 결과를 예측하였다. 결과적으로 물리적 이론에 근거하여 시뮬레이션 모델 구축함으로써 HCD 분석의 정확성을 향상시켰다. 하지만 가속 조건과 동작 조건의 self-heating 효과가 다르기 때문에 소자가 실제 CMOS 회로의 동작 조건에서 interface trap을 발생시키는 메커니즘은 다를 수 있다. 따라서 우리는 동작 영역에서의 각 성분의 비율까지 예측하였다. 마지막으로 우리는 10 nm node 소자에서 nFinFET에 비해 pFinFET에서 높은 열화가 발생하는 원인에 대해 분석하였다. pFinFET은 소스/드레인 물질로 SiGe를 사용하기 때문에 nFinFET에 비해 self-heating 효과가 심하여 소자 온도가 도 높다. 이론적으로 MP 메커니즘의 lifetime은 온도가 증가할수록 감소하기 때문에 MP에 의한 열화 또한 감소한다. 따라서 소자 온도가 더 높은 pFinFET에서 nFinFET에 비해 더 많은 MP가 발생하기 어렵다. 하지만 nFinFET 과 달리 pFinFET에서는 Si-H bond의 electron과 hole이 반응하여 interface trap을 생성시키는 RD 가 발생할 수 있다. 또한 RD는 온도가 높을수록 더 많은 열화가 발생하기 때문에, pFinFET에서 nFinFET보다 더 많은 열화가 발생하는 현상을 설명할 수 있다. 따라서 우리는 HCD 조건이지만 소자 온도가 높은 pFinFET에서 추가적인 RD 메커니즘이 발생할 수 있다고 제안한다. 다양한 전압 조건에서의 전류 열화율을 통해 주요 열화 메커니즘을 분석하였으며 pFinFET에서는 RD가 주요함을 확인하였다. 또한 TCAD 시뮬레이션을 이용하여 HCD 조건에서 발생할 수 있는 RD를 예측하였다. 그 결과 RD를 제외한 순수 hot carrier 성분은 pFinFET보다 nFinFET에서 더 많이 발생한다.CMOS logic devices have been scaled down to improve performance. However, the operating voltage is not sufficiently reduced compared to the scale down in physical dimensions. Therefore, since the electric field and temperature of the device gradually increase, reliability is still a critical issue in logic devices. Recently, many studies on the reliability of 3D devices are being conducted, but most of the studies are related to empirical modeling. Therefore, in this study, based on the actual measurement results, the hot carrier degradation(HCD) reliability of the logic device was analyzed focusing on the physical theory using Technology computer-aided design (TCAD) simulation. First, electron-electron scattering(EES) was applied to the TCAD simulation to improve the accuracy of the hot carrier model. Additionally, calibration between the measurement data of 14 nm node FinFET and the model was performed to confirm the consistency. The calibration process required various voltage and temperature conditions to account for all scattering mechanisms. Therefore, HCD was analyzed according to various voltage conditions, and the parameters of the HCD model were extracted by calibration process. Next, temperature dependence under various HCD conditions was analyzed. Unlike oxide traps, interface traps show different temperature dependence depending on HCD voltage conditions. Therefore, the interface traps were separated into three components and the temperature dependence was analyzed for each component. Multiple particle process (MP) and Field enhanced thermal degradation process (FP) have a constant temperature dependence regardless of voltage conditions. On the other hand, the temperature dependence of Single particle process (SP) varies depending on the voltage condition because SP is affected by scattering. In the process of temperature dependence analysis, calibration is also performed and parameters considering various voltages and temperatures were extracted through several iterations. The improved model to which the extracted parameters were applied showed more precise prediction of degradation compared to that of the previous model. As a results, accuracy of the HCD analysis was improved by establishing the HCD simulation framework based on physical theories. However, since the self-heating effect of the acceleration condition and the operation condition are different, the HCD mechanism that occurs in the actual CMOS circuit may also be different. Therefore, we predicted the ratio of each component under operating condition. Finally, in 10 nm node devices, we analyzed the cause of higher HCD in pFinFETs than in nFinFETs. Self-heating effect is severe in pFinFETs because SiGe is used as the source/drain material which makes the device temperature higher than nFinFETs. Theoretically, because the lifetime of multiple particle(MP) mechanism decreases as temperature increases, degradation due to MP decreases. Therefore, it is difficult for the HCD mechanisms to occur more in pFinFETs which has higher temperature than nFinFETs. However, in pFinFETs unlike nFinFETs, reaction-diffusion (RD) mechanism can occur in which holes react with the electrons of Si-H bonds to generate interface traps. Also, since RD deteriorates more as the temperature increases, the phenomenon that more degradation occurs in pFinFET than nFinFET can be explained by the RD mechanism. Therefore, we propose an additional RD mechanism that is caused by high device temperature in pFinFETs even in HCD condition. Main components were investigated through measurements of current degradation rate in various voltage conditions, and it was found that RD is dominant in pFinFETs. Also, RD that can occur in HCD condition was predicted through TCAD simulation. As a results, degradation due to pure hot carriers without RD occurs more in nFinFETs than in pFinFETs.Abstract i Chapter 1. Introduction 1 Chapter 2. Hot Carrier Degradation Model 4 2.1. Physical theory 4 2.2. TCAD simulation 8 2.3. Calibration process 14 2.4. Summary 22 Chapter 3. Analysis on Temperature Dependence of HCD 25 3.1. Introduction 25 3.2. Temperature dependence according to acceleration conditions 26 3.3. Calibration process 30 3.4. Mechanism separation 33 3.5. HCD prediction in the nominal voltage 35 3.6. Summary 36 Chapter 4. Comparative Analysis of HCD in nMOS/pMOS FinFET 39 4.1. Introduction 39 4.2. Comparison of HCD in the long/short channel FinFET 40 4.3. Self-heating effect in n/pFinFET 44 4.4. Bias Temperature Instability(BTI) in n/pFinFET 47 4.5. Summary 59 Chapter 5. Conclusion 64 Abstract in Korean 66 List of Publications 69Docto

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Probing technique for energy distribution of positive charges in gate dielectrics and its application to lifetime prediction

    Get PDF
    The continuous reduction of the dimensions of CMOS devices has increased the negative bias temperature instability (NBTI) of pMOSFETs to such a level that it is limiting their lifetime. This increase of NBTI is caused mainly by three factors: an increase of nitrogen concentration in gate dielectric, a higher operation electrical field, and a higher temperature. Despite of many years’ research work, there are questions on the correctness of the NBTI lifetime predicted through voltage acceleration and extrapolation. The conventional lifetime prediction technique measures the degradation slowly and it typically takes 10 ms or longer to record one threshold voltage shift. It has been reported that NBTI can recover substantially in this time and the degradation is underestimated. To minimize the recovery, ultra-fast technique has been developed and the measurement time has been reduced to the order of microseconds. Once the recovery is suppressed, however, the degradation no longer follows a power law and there is no industry-wide accepted method for lifetime prediction. The objective of this project is to overcome this challenge and to develop a reliable NBTI lifetime prediction technique after freezing the recovery. To achieve this objective, it is essential to have an in-depth knowledge on the defects responsible for the recovery. It has been generally accepted that the NBTI recovery is dominated by the discharge of trapped holes. For the thin dielectric (e.g. < 3 nm) used by current industry, all hole traps are within direct tunnelling distance from the substrate and their discharging is mainly controlled by their energy levels against the Fermi level at the substrate interface. As a result, it is crucial to have the energy distribution of positive charges (PC) in the gate dielectric, but there is no technique available for probing this energy profile. A major achievement of this project is to develop a new technique that can probe the energy distribution of PCs both within and beyond the silicon energy gap. After charging up the hole traps, they are allowed to discharge progressively by changing the gate bias, Vg, in the positive direction in steps. This allows the Fermi level at the interface to be swept from a level below the valence band edge to a level above the conduction band edge, giving the required energy profile. Results show that PCs can vary by one order of magnitude with energy level. The PCs in different energy regions clearly originate from different defects. The PCs below the valence band edge are as-grown hole traps which are insensitive to stress time and temperature, and substantially higher in thermal SiON. The PCs above the valence band edge are from the created defects. The PCs within bandgap saturate for either longer stress time or higher stress temperature. In contrast, the PCs above conduction band edge, namely the anti-neutralization positive charges, do not saturate and their generation is clearly thermally accelerated. This energy profile technique is applicable to both SiON and high-k/SiON stack. It is found that both of them have a high level of as-grown hole traps below the valence band edge and their main difference is that there is a clear peak in the energy density near to the conduction band edge for the High-k/SiON stack, but not for the SiON. Based on this newly developed energy profile technique and the improved understanding, a new lifetime prediction technique has been proposed. The principle used is that a defect must be chargeable at an operation voltage, if it is to be included in the lifetime prediction. At the stress voltage, some as-grown hole traps further below Ev are charged, but they are neutral under an operation bias and must be excluded in the lifetime prediction. The new technique allows quantitative determination of the correct level of as-grown hole trapping to be included in the lifetime prediction. A main advantage of the proposed technique is that the contribution of as-grown hole traps is experimentally measured, avoiding the use of trap-filling models and the associated fitting parameters. The successful separation of as-grown hole trapping from the total degradation allows the extraction of generated defects and restores the power-law kinetics. Based on this new lifetime prediction technique, it is concluded that the maximum operation voltage for a 10 years lifetime is substantially overestimated by the conventional prediction technique. This new lifetime prediction technique has been accepted for presentation at the 2013 International Electron Devices Meeting (IEDM)

    Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    kwartalni

    Trapping and Reliability Investigations in GaN-based HEMTs

    Get PDF
    GaN-based high electron mobility transistors (HEMTs) are promising candidates for future microwave equipment, such as new solid state power amplifiers (SSPAs), thanks to their excellent performance. A first demonstration of GaN-MMIC transmitter has been developed and put on board the PROBA-V mission. But this technology still suffers from the trapping phenomena, principally due to lattice defects. Thus, the aim of this research is to investigate the trapping effects and the reliability aspects of the GH50 power transistors for C-band applications. A new trap investigation protocol to obtain a complete overview of trap behavior from DC to radio-frequency operation modes, based on combined pulsed I/V measurements, DC and RF drain current measurements, and low-frequency dispersion measurements, is proposed. Furthermore, a nonlinear electro-thermal AlGaN/GaN model with a new additive thermal-trap model including the dynamic behavior of these trap states and their associated temperature variations is presented, in order to correctly predict the RF performance during real RF operating conditions. Finally, an advanced time-domain methodology is presented in order to investigate the device’s reliability and to determine its safe operating area. This methodology is based on the continual monitoring of the RF waveforms and DC parameters under overdrive conditions in order to assess the degradation of the transistor characteristics in the RF power amplifier
    corecore