143 research outputs found

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Lightweight mobile and wireless systems: technologies, architectures, and services

    Get PDF
    1Department of Information and Communication Systems Engineering (ICSE), University of the Aegean, 81100 Mytilene, Greece 2Department of Information Engineering and Computer Science (DISI), University of Trento, 38123 Trento, Italy 3Department of Informatics, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, 574 00 Macedonia, Greece 4Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), 08860 Barcelona, Spain 5North Carolina State University (NCSU), Raleigh, NC 27695, US

    Contributions to Analysis and Mitigation of Cochannel Interference in Cellular Wireless Networks

    Get PDF
    Cellular wireless networks have become a commodity. We use our cellular devices every day to connect to others, to conduct business, for entertainment. Strong demand for wireless access has made corresponding parts of radio spectrum very valuable. Consequently, network operators and their suppliers are constantly being pressured for its efficient use. Unlike the first and second generation cellular networks, current generations do not therefore separate geographical sites in frequency. This universal frequency reuse, combined with continuously increasing spatial density of the transmitters, leads to challenging interference levels in the network. This dissertation collects several contributions to analysis and mitigation of interference in cellular wireless networks. The contributions are categorized and set in the context of prior art based on key characteristics, then they are treated one by one. The first contribution encompasses dynamic signaling that measures instantaneous interference situations and allows only for such transmissions that do not harm each other excessively. A novel forward signaling approach is introduced as an alternative to traditional reverse signaling. Forward signaling allows the interference management decisions to be done at the receiver, where there is more relevant information available. The second contribution analyzes cross-link interference in heterogeneous networks. Cross-link interference is interference between downlink and uplink transmissions that can appear in time-division duplex (TDD) networks. It is shown that uplink reception of small cells can be disturbed considerably by macrocell downlink transmissions. We proposes an intuitive solution to the problem based on power control. Users in small cells have generally enough power headroom as the distance to the small base station is often short. The third contribution provides an extensive analysis of a specific interference managment method that the Long-Term Evolution (LTE) applies in cochannel heterogeneous deployments. We analyze this so-called time muting using a modern stochastic geometry approach and show that performance of the method strongly depends on residual interference in the muted sections of time. The fourth and last contribution analyzes the impact of interference rank, i.e., number of spatial streams at the interferer, on a beamformed or spatially block coded transmission. It is shown that when the interferer chooses to transmit multiple spatial streams, spreading the power in spatial domain has potential to decrease probability of outage at neighbor receiver, especially if the neighbor transmission uses beamforming

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Antenna subset selection for cyclic prefix assisted MIMO wireless communications over frequency selective channels

    Get PDF
    Antenna (subset) selection techniques are feasible to reduce the hardware complexity of multiple-input multiple-output (MIMO) systems, while keeping the benefits of higher-order MIMO systems. Many studies of antenna selection schemes are based on frequency-flat channel models, which are inconsistent to broadband MIMO systems employing spatial-multiplexing. In broadband MIMO systems aiming to provide high-data-rate links, the employed signal bandwidth is typically larger than the coherence bandwidth of the channel so that the channel will be of frequency selective nature. Within this contribution we provide an overview on joint transmitter- and receiver-side antenna subset selection methods for frequency selective channels and deploy them in MIMO orthogonal frequency division multiplexing (OFDM) systems and MIMO single-carrier (SC) systems employing frequency domain equalization (FDE).DFG/KA 1154/1

    Joint signal detection and channel estimation in rank-deficient MIMO systems

    Get PDF
    L'évolution de la prospère famille des standards 802.11 a encouragé le développement des technologies appliquées aux réseaux locaux sans fil (WLANs). Pour faire face à la toujours croissante nécessité de rendre possible les communications à très haut débit, les systèmes à antennes multiples (MIMO) sont une solution viable. Ils ont l'avantage d'accroître le débit de transmission sans avoir recours à plus de puissance ou de largeur de bande. Cependant, l'industrie hésite encore à augmenter le nombre d'antennes des portables et des accésoires sans fil. De plus, à l'intérieur des bâtiments, la déficience de rang de la matrice de canal peut se produire dû à la nature de la dispersion des parcours de propagation, ce phénomène est aussi occasionné à l'extérieur par de longues distances de transmission. Ce projet est motivé par les raisons décrites antérieurement, il se veut un étude sur la viabilité des transcepteurs sans fil à large bande capables de régulariser la déficience de rang du canal sans fil. On vise le développement des techniques capables de séparer M signaux co-canal, même avec une seule antenne et à faire une estimation précise du canal. Les solutions décrites dans ce document cherchent à surmonter les difficultés posées par le medium aux transcepteurs sans fil à large bande. Le résultat de cette étude est un algorithme transcepteur approprié aux systèmes MIMO à rang déficient
    corecore