863 research outputs found

    Progresses in analytical design of distribution grids and energy storage

    Get PDF
    none4noIn the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.openColangelo G.; Spirto G.; Milanese M.; de Risi A.Colangelo, G.; Spirto, G.; Milanese, M.; de Risi, A

    Renewable hydrogen supply chains: A planning matrix and an agenda for future research

    Get PDF
    Worldwide, energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU, 2019), hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition, in particular when hydrogen is produced by water electrolysis using electricity from renewable sources (renewable hydrogen). However, due to the operational characteristics of the renewable HSC, its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables, such as wind and solar energy, or centrally by using electricity generated from a hydro power plant with a large volume. Similarly, demand for hydrogen can also be diverse, with many new applications, such as fuels for fuel cell electrical vehicles and electricity generation, feedstocks in industrial processes, and heating for buildings. The HSC consists of various stages (production, storage, distribution, and applications) in different forms, with strong interdependencies, which further increase HSC complexity. Finally, planning of an HSC depends on the status of hydrogen adoption and market development, and on how mature technologies are, and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain (SC) planning for HSCs is insufficient. Therefore, in this study we develop a planning matrix with related planning tasks, leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore, we outline an agenda for future research, from the supply chain management perspective, in order to support renewable HSC development, considering the different phases of renewable HSCs adoption and market development

    A comprehensive review on the potential of green hydrogen in empowering the low-carbon economy: development status, ongoing trends and key challenges.

    Get PDF
    Green hydrogen is currently considered a key element for delivering free-carbon energy. This paper provides an extensive assessment of the potential of green hydrogen technology as a pathway to the low-carbon economy while highlighting the major technical challenges to its implementation. A detailed overview of green hydrogen production, storage technologies, transportation infrastructures and green hydrogen implementations is provided. Status of the ongoing trends for repurposing the existing gas grid infrastructures to transport the hydrogen safely across Europe is presented in this work, with 48 sample projects statistically reviewed and classified based on the key challenges being addressed. The potential of green hydrogen in decarbonizing the energy sector and the associated technical challenges are widely reviewed and critically assessed. Detailed discussions have been provided on the optimal sizing of renewable hydrogen energy systems, real-world modelling of hydrogen energy storage elements and the smart energy management strategies for the application of hydrogen electrolysers as smart controllable loads. Some prospects are given on how digital key trends of blockchain technologies could support the growth of green hydrogen markets together with emphasis on the raised research questions. Further assessment is presented on the potential of green hydrogen versus blue hydrogen while reflecting on future directions and policy recommendations for planning a successful energy transition. Finally, some future insights and near-term policy recommendations are provided for promoting the use of green hydrogen production while supporting the green hydrogen industry

    Calculation of Synthetic Energy Carrier Production Costs with high Temporal and Geographical Resolution

    Get PDF

    On the decarbonization of chemical and energy industries: Power-to-X design strategies

    Get PDF
    Tesis por compendio de publicaciones[ES]Hoy en día, la preocupación por la sostenibilidad está dando lugar a todo un nuevo sistema económico. Este nuevo paradigma afecta a todos los sectores como la agricultura, la industria, el sector financiero, etc. Dos de los más afectados son la industria química y el sistema energético debido a su configuración actual y, estos dos sectores son particularmente estudiados en esta tesis. En cuanto a la industria química, la producción electroquímica es uno de los métodos más atractivos para producir productos químicos de forma sostenible dejando atrás la producción tradicional no renovable. En esta tesis se ha prestado especial atención a la producción sostenible de amoníaco. Se han evaluado dos rutas diferentes, la primera utiliza la electrólisis del agua y evalúa diferentes tecnologías de separación del aire en función de la escala, y la segunda utiliza la biomasa como materia prima. Utilizando estos productos electroquímicos, es posible construir una nueva industria química sostenible. En esta tesis se propone la síntesis de carbo- nato de dimetilo (DMC) utilizando metanol renovable, amoníaco y dióxido de carbono capturado. En cuanto al sector energético, la introducción de fuentes renovables es esencial para alcanzar los objetivos propuestos. En este punto, el almacenamiento de energía será crucial para garantizar la satisfacción de la demanda debido a las fluctuaciones inherentes a las energías solar y eólica. Esta tesis se centra en la evaluación de productos químicos como forma potencial de almacenamiento o como vectores de energía. Se estudia la transformación del amoníaco en electricidad a escala de proceso proporcionando los resultados necesarios para implementar esta alternativa a escala de red. El diseño y el funcionamiento de las insta- laciones basadas en renovables se abordan simultáneamente, incluyendo la ubicación de las unidades debido a que los recursos renovables estan distri- buidos. Se propone un sistema integrado para utilizar productos químicos como vectores energéticos para diferentes aplicaciones energéticas en una región de España, calculando las capacidades, la operación y la ubicación óptima de las instalaciones. Además, se realiza la integración de diferentes energías renovables intermitentes y no intermitentes junto con diferentes tecnologías de almacenamiento desde una perspectiva económica y social para satisfacer una determinada demanda eléctrica. Todos estos sistemas y herramientas propuestos contribuyen a crear un escenario futuro en el que los sectores químico y energético se transforman para ser menos impactantes en el medio ambiente que nos rode

    Book of Abstracts: 6th International Conference on Smart Energy Systems

    Get PDF

    LowEmission Annual report 2022

    Get PDF
    publishedVersio

    Collaborative planning and optimization for electric-thermal-hydrogen-coupled energy systems with portfolio selection of the complete hydrogen energy chain

    Full text link
    Under the global low-carbon target, the uneven spatiotemporal distribution of renewable energy resources exacerbates the uncertainty and seasonal power imbalance. Additionally, the issue of an incomplete hydrogen energy chain is widely overlooked in planning models, which hinders the complete analysis of the role of hydrogen in energy systems. Therefore, this paper proposes a high-resolution collaborative planning model for electricity-thermal-hydrogen-coupled energy systems considering both the spatiotemporal distribution characteristics of renewable energy resources and the multi-scale bottom-to-top investment strategy for the complete hydrogen energy chain. Considering the high-resolution system operation flexibility, this paper proposes a hydrogen chain-based fast clustering optimization method that can handle high-dimensional data and multi-time scale operation characteristics. The model optimizes the geographical distribution and capacity configuration of the Northeast China energy system in 2050, with hourly operational characteristics. The planning optimization covered single-energy devices, multi-energy-coupled conversion devices, and electric-hydrogen transmission networks. Last but not least, this paper thoroughly examines the optimal portfolio selection of different hydrogen technologies based on the differences in cost, flexibility, and efficiency. In the Pareto analysis, the proposed model reduces CO2 emissions by 60% with a competitive cost. This paper provides a zero-carbon pathway for multi-energy systems with a cost 4% less than the social cost of carbon $44.6/ton, and the integration of the complete hydrogen energy chain reduces the renewable energy curtailment by 97.0%. Besides, the portfolio selection results indicate that the system favors the SOEC with the highest energy efficiency and the PEMFC with the fastest dynamic response when achieving zero-carbon emissionsComment: 32 pages, 17 figure
    corecore