6,778 research outputs found

    Pressure Sensitive Paints:The Basics & Applications

    Get PDF
    Surface pressure measurement is one of the fundamental measurements in fluid dynamics experiments. Pressure sensitive paint (PSP) is a relatively new tool that has the unique capability of providing a field measurement over the entire surface of a model. This method is based on the attenuation by oxygen of the luminescence emitted by certain excited molecules in the visible or ultraviolet spectrums. The higher the pressure, the higher the partial pressure of the oxygen and the more the intensity emitted by the coating is attenuated. Then all that is needed is to measure the intensity of the emission to find the pressure. Because of its many advantages over the traditional techniques, it has been extensively used in almost all the fluid dynamics flow regimes. The following document describes the basics of PSP and its applications

    Oral application of L-menthol in the heat: From pleasure to performance

    Get PDF
    When menthol is applied to the oral cavity it presents with a familiar refreshing sensation and cooling mint flavour. This may be deemed hedonic in some individuals, but may cause irritation in others. This variation in response is likely dependent upon trigeminal sensitivity toward cold stimuli, suggesting a need for a menthol solution that can be easily personalised. Menthol’s characteristics can also be enhanced by matching colour to qualitative outcomes; a factor which can easily be manipulated by practitioners working in athletic or occupational settings to potentially enhance intervention efficacy. This presentation will outline the efficacy of oral menthol application for improving time trial performance to date, either via swilling or via co-ingestion with other cooling strategies, with an emphasis upon how menthol can be applied in ecologically valid scenarios. Situations in which performance is not expected to be enhanced will also be discussed. An updated model by which menthol may prove hedonic, satiate thirst and affect ventilation will also be presented, with the potential performance implications of these findings discussed and modelled. Qualitative reflections from athletes that have implemented menthol mouth swilling in competition, training and maximal exercise will also be included

    Pressure-Sensitive Paint: Effect of Substrate

    Get PDF
    There are numerous ways in which pressure-sensitive paint can be applied to a surface. The choice of substrate and application method can greatly affect the results obtained. The current study examines the different methods of applying pressure-sensitive paint to a surface. One polymer-based and two porous substrates (anodized aluminum and thin-layer chromatography plates) are investigated and compared for luminescent output, pressure sensitivity, temperature sensitivity and photodegradation. Two luminophores [tris-Bathophenanthroline Ruthenium(II) Perchlorate and Platinum-tetrakis (pentafluorophenyl) Porphyrin] will also be compared in all three of the substrates. The results show the applicability of the different substrates and luminophores to different testing environments

    Applications of aerospace technology in the public sector

    Get PDF
    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine

    Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    Get PDF
    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 A

    Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Get PDF
    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977
    corecore