2,686 research outputs found

    Space-Time Coded Spatial Modulated Physical Layer Network Coding for Two-Way Relaying

    Full text link
    Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using Coordinate Interleaved Orthogonal Designs (CIOD's). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, Adaptive Network Coding (ANC) is employed at the relay and the relay transmits a CIOD Space Time Block Code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBC's are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M3)\mathcal{O}(M^3) for an arbitrary signal set and O(M2M)\mathcal{O}(M^2\sqrt{M}) for square QAM signal set.Comment: 9 pages, 7 figure

    Relay Selection with Network Coding in Two-Way Relay Channels

    Full text link
    In this paper, we consider the design of joint network coding (NC)and relay selection (RS) in two-way relay channels. In the proposed schemes, two users first sequentially broadcast their respective information to all the relays. We propose two RS schemes, a single relay selection with NC and a dual relay selection with NC. For both schemes, the selected relay(s) perform NC on the received signals sent from the two users and forward them to both users. The proposed schemes are analyzed and the exact bit error rate (BER) expressions are derived and verified through Monte Carlo simulations. It is shown that the dual relay selection with NC outperforms other considered relay selection schemes in two-way relay channels. The results also reveal that the proposed NC relay selection schemes provide a selection gain compared to a NC scheme with no relay selection, and a network coding gain relative to a conventional relay selection scheme with no NC.Comment: 11 pages, 5 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

    Full text link
    We develop and analyze new cooperative strategies for ad hoc networks that are more spectrally efficient than classical DF cooperative protocols. Using analog network coding, our strategies preserve the practical half-duplex assumption but relax the orthogonality constraint. The introduction of interference due to non-orthogonality is mitigated thanks to precoding, in particular Dirty Paper coding. Combined with smart power allocation, our cooperation strategies allow to save time and lead to more efficient use of bandwidth and to improved network throughput with respect to classical RDF/PDF.Comment: 7 pages, 7 figure

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore