544 research outputs found

    Bridge damage identification using deep learning-based Convolutional Neural Networks (CNNs)

    Get PDF
    In this paper, a novel method is proposed based on a windowed-one-dimensional convolutional neural network for multiclass damage detection using acceleration responses. The data is pre-processed and augmented by extracting samples of windows of the original acceleration time series. 1D CNN is developed to classify the signals in multiple classes. The damage is detected if the predicted classification is one of the indicated damage levels. The damage is quantified using the predicted class probabilities. Various signals from the accelerometers are provided as input to the 1D CNN model, and the resulting class probabilities are used to identify the location of the damage. The proposed method is validated using Z24 bridge benchmark data for multiclass classification for two damage scenarios. The results show that the proposed 1D CNN method performs with superior accuracy for severe damage cases and works well with different types of damage types

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Machine Learning Methods for Anomaly Detection in Nuclear Power Plant Power Transformers

    Full text link
    Power transformers are an important component of a nuclear power plant (NPP). Currently, the NPP operates a lot of power transformers with extended service life, which exceeds the designated 25 years. Due to the extension of the service life, the task of monitoring the technical condition of power transformers becomes urgent. An important method for monitoring power transformers is Chromatographic Analysis of Dissolved Gas. It is based on the principle of controlling the concentration of gases dissolved in transformer oil. The appearance of almost any type of defect in equipment is accompanied by the formation of gases that dissolve in oil, and specific types of defects generate their gases in different quantities. At present, at NPPs, the monitoring systems for transformer equipment use predefined control limits for the concentration of dissolved gases in the oil. This study describes the stages of developing an algorithm to detect defects and faults in transformers automatically using machine learning and data analysis methods. Among machine learning models, we trained Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, Neural Networks. The best of them were then combined into an ensemble (StackingClassifier) showing F1-score of 0.974 on a test sample. To develop mathematical models, we used data on the state of transformers, containing time series with values of gas concentrations (H2, CO, C2H4, C2H2). The datasets were labeled and contained four operating modes: normal mode, partial discharge, low energy discharge, low-temperature overheating.Comment: 9 pages, 5 figures, 4 tables, 33 reference

    Contextual anomaly detection framework for big sensor data

    Get PDF

    Data mining based cyber-attack detection

    Get PDF

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS

    Contextual Anomaly Detection in Big Sensor Data

    Get PDF
    Performing predictive modelling, such as anomaly detection, in Big Data is a difficult task. This problem is compounded as more and more sources of Big Data are generated from environmental sensors, logging applications, and the Internet of Things. Further, most current techniques for anomaly detection only consider the content of the data source, i.e. the data itself, without concern for the context of the data. As data becomes more complex it is increasingly important to bias anomaly detection techniques for the context, whether it is spatial, temporal, or semantic. The work proposed in this paper outlines a contextual anomaly detection technique for use in streaming sensor networks. The technique uses a well-defined content anomaly detection algorithm for real-time point anomaly detection. Additionally, we present a post-processing context aware anomaly detection algorithm based on sensor profiles, which are groups of contextually similar sensors generated by a multivariate clustering algorithm. Our proposed research has been implemented and evaluated with real-world data provided by Powersmiths, located in Brampton, Ontario, Canada
    corecore