176 research outputs found

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Feasibility of a Cognitive Extension to Existing 802.11b Wireless Devices

    Get PDF
    Cognitive radio presents a means of altering the communication method of a wireless device based on channel conditions and the intended receiving device. However, the design of such a radio is very complicated as it must consider the possibility of multiple forms of modulation, differing transmit frequencies and symbol rates, and the accompany changes to other training procedures such as synchronization. This work proposes that in some cases a simpler, more cost-effective approach can be taken, that builds upon the architecture of existing wireless devices forming a new radio with cognitive capabilities. This approach allows the base device to perform all baseband and MAC-related functions with minimal or no negative effects due to the extension. As changes in modulation type are much more complex, the analysis in this work is restricted to systems wanting to intelligently alter their transmit frequency or power, such as the 802.22 standard. Because of the extensive investment that has already been made in 802.11 technology, 802.11b chipsets and APs are very inexpensive. Therefore a frequency conversion extension was designed and tested as the fixed architecture to enable signal conversion of an 802.11b signal. Cognitive functionalities could be added with little modification to the proposed design in this work.The overall goal of this work is to achieve throughput and packet loss results comparable to the base design at the converted frequency of approximately 1.7 GHz. The successful conversion with a fixed design proves the concept feasible, as the only additional requirement is to interface a cognitive subsystem with a configurable architecture employing the same design as the fixed architecture. The nodes under test were isolated in an anechoic chamber to prevent interference from nearby networks. A program called IxChariot is used to experimentally conduct network performance tests to confirm that the extended device operates nearly identically to a normal 802.11b radio. Tests were performed for one-hop and two-hop scenarios collecting throughput and packet loss statistics. A number of undesirable effects such as increased switching delay time are also examined as well as their impact on the MAC and physical layer of the base device. The results of testing established the feasibility of a cognitive extension with no perceivable throughput/packet loss degradation for reasonable switching delays. Analysis of poor switching delay performance and 802.11g is also presented to illustrate the additional design constraints these challenges present

    Physical Layer Watermarking of Direct Sequence Spread Spectrum Signals

    Get PDF
    Security services and mechanisms in wireless networks have long been studied and developed. However, compared to upper network layers, physical layer security did not play a signicant role in the OSI security model. Thanks to the easier implementation and verication methods brought by the development of software dened radio (SDR) techniques, physical layer security mechanisms have recently drawn increasing interest from researchers. Digital watermarking is one of the popular security techniques that can fully utilize various exclusive characteristics of the physical layer. This thesis proposes a physical layer watermarking technique named Water-marked Direct Sequence Spread Spectrum (DSSS) or WDSSS technique, which embeds authentication information into pseudonoise (PN) sequences of a DSSS system. The design and implementation of the WDSSS prototype system on the GNU Radio/USRP SDR platform is discussed, as well as two watermark embedding methods, the maximized minimum distance method and the sub-sequence method. Theoretical analysis and experimental results on the WDSSS prototype system are presented to evaluate the performances of both the content signal and the watermark signal. Results show that, for the 11-chip PN sequence, increasing articial chip errors has aquantitatively predictable impact on the content signal, requiring 2 dB higher signal-to-noise ratio (SNR) to maintain an acceptable packet error rate (PER) for one additional ipped chip. In terms of the watermark signal, the two embedding methods demonstrated individual advantages in either PER or throughput. The maximized minimum distance method outperforms the sub-sequence embedding method with a 3 dB lower SNR requirement, while the latter provides 400 more throughput than the former with adequate SN

    Performance analysis of turbo coded OFDM in wireless application

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a popular modulation method in high speed wireless communications. By partitioning a wideband fading channel into flat narrowband channels, OFDM is able to mitigate the detrimental effects of multi path fading using a simple one- tap equalizer. There is a growing need to quickly transmit information wirelessly and accurately.Engineers have already combine techniques such as OFDM suitable for high data rate transmission with forward error correction (FEC) methods over wireless channels. In this thesis, we enhance the system throughput of a working OFDM system by adding turbo coding. The smart use of coding and power allocation in OFDM will be useful to the desired performance at higher data rates.Error control codes have become a vital part of modern digital wireless systems,enabling reliable transmission to be achieved over noisy channels. Over the past decade,turbo codes have been widely considered to be the most powerful error control code of practical importance. In the same time-scale, mixed voice/data networks have advanced further and the concept of global wireless networks and terrestrial links has emerged. Such networks present the challenge of optimizing error control codes for different channel types,and for the different qualities of service demanded by voice and data

    Performance of Turbo Coded OFDM in Wireless Application

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a popular modulation method in high speed wireless communications. By partitioning a wideband fading channel into flat narrowband channels, OFDM is able to mitigate the detrimental effects of multi path fading using a simple one- tap equalizer. There is a growing need to quickly transmit information wirelessly and accurately. Engineers have already combine techniques such as OFDM suitable for high data rate transmission with forward error correction (FEC) methods over wireless channels. In this thesis, we enhance the system throughput of a working OFDM system by adding turbo coding. The smart use of coding and power allocation in OFDM will be useful to the desired performance at higher data rates. Error control codes have become a vital part of modern digital wireless systems, enabling reliable transmission to be achieved over noisy channels. Over the past decade, turbo codes have been widely considered to be the most powerful error control code of practical importance. In the same time-scale, mixed voice/data networks have advanced further and the concept of global wireless networks and terrestrial links has emerged. Such networks present the challenge of optimizing error control codes for different channel types, and for the different qualities of service demanded by voice and data
    corecore