46,273 research outputs found

    Efficiently Clustering Very Large Attributed Graphs

    Full text link
    Attributed graphs model real networks by enriching their nodes with attributes accounting for properties. Several techniques have been proposed for partitioning these graphs into clusters that are homogeneous with respect to both semantic attributes and to the structure of the graph. However, time and space complexities of state of the art algorithms limit their scalability to medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a fast and scalable algorithm for partitioning large attributed graphs. The approach is robust, being compatible both with categorical and with quantitative attributes, and it is tailorable, allowing the user to weight the semantic and topological components. Further, the approach does not require the user to guess in advance the number of clusters. SToC relies on well known approximation techniques such as bottom-k sketches, traditional graph-theoretic concepts, and a new perspective on the composition of heterogeneous distance measures. Experimental results demonstrate its ability to efficiently compute high-quality partitions of large scale attributed graphs.Comment: This work has been published in ASONAM 2017. This version includes an appendix with validation of our attribute model and distance function, omitted in the converence version for lack of space. Please refer to the published versio

    Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding

    Get PDF
    Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through an embedding method provides superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, most of the existing methods for network embedding only utilize topological information of a vertex, ignoring a rich set of nodal attributes (such as user profiles of an online social network, or textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes into account both attributional and relational information entails a complete network information and could further enrich the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes. Besides, it utilizes Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node pair and a dissimilar node pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over the state-of-the-art existing methods

    Explanation-Based Auditing

    Full text link
    To comply with emerging privacy laws and regulations, it has become common for applications like electronic health records systems (EHRs) to collect access logs, which record each time a user (e.g., a hospital employee) accesses a piece of sensitive data (e.g., a patient record). Using the access log, it is easy to answer simple queries (e.g., Who accessed Alice's medical record?), but this often does not provide enough information. In addition to learning who accessed their medical records, patients will likely want to understand why each access occurred. In this paper, we introduce the problem of generating explanations for individual records in an access log. The problem is motivated by user-centric auditing applications, and it also provides a novel approach to misuse detection. We develop a framework for modeling explanations which is based on a fundamental observation: For certain classes of databases, including EHRs, the reason for most data accesses can be inferred from data stored elsewhere in the database. For example, if Alice has an appointment with Dr. Dave, this information is stored in the database, and it explains why Dr. Dave looked at Alice's record. Large numbers of data accesses can be explained using general forms called explanation templates. Rather than requiring an administrator to manually specify explanation templates, we propose a set of algorithms for automatically discovering frequent templates from the database (i.e., those that explain a large number of accesses). We also propose techniques for inferring collaborative user groups, which can be used to enhance the quality of the discovered explanations. Finally, we have evaluated our proposed techniques using an access log and data from the University of Michigan Health System. Our results demonstrate that in practice we can provide explanations for over 94% of data accesses in the log.Comment: VLDB201

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0n2/31n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure

    Indeterministic Handling of Uncertain Decisions in Duplicate Detection

    Get PDF
    In current research, duplicate detection is usually considered as a deterministic approach in which tuples are either declared as duplicates or not. However, most often it is not completely clear whether two tuples represent the same real-world entity or not. In deterministic approaches, however, this uncertainty is ignored, which in turn can lead to false decisions. In this paper, we present an indeterministic approach for handling uncertain decisions in a duplicate detection process by using a probabilistic target schema. Thus, instead of deciding between multiple possible worlds, all these worlds can be modeled in the resulting data. This approach minimizes the negative impacts of false decisions. Furthermore, the duplicate detection process becomes almost fully automatic and human effort can be reduced to a large extent. Unfortunately, a full-indeterministic approach is by definition too expensive (in time as well as in storage) and hence impractical. For that reason, we additionally introduce several semi-indeterministic methods for heuristically reducing the set of indeterministic handled decisions in a meaningful way
    corecore